Project description:Terretonin N (1), a new highly oxygenated and unique tetracyclic 6-hydroxymeroterpenoid, was isolated together with seven known compounds from the ethyl acetate extract of a solid-state fermented culture of Nocardiopsis sp. Their structures were elucidated by spectroscopic analysis. The structure and absolute configuration of 1 were unambiguously determined by X-ray crystallography. The isolation and taxonomic characterization of Nocardiopsis sp. is reported. The antimicrobial activity and cytotoxicity of the strain extract and compound 1 were studied using different microorganisms and a cervix carcinoma cell line, respectively.
Project description:Here we report the draft genome sequence of Nocardiopsis sp. strain TP-A0876, isolated from marine sediment, which produces polyketide-derived pyrones called nocapyrones. The genome contains three polyketide synthase (PKS) gene clusters, one of which was proposed to be responsible for nocapyrone biosynthesis. This genome sequence will facilitate the study of the potential for secondary metabolism in Nocardiopsis strains.
Project description:Nocardiopsis strains were isolated from water-damaged indoor environments. Two strains (N. alba subsp. alba 704a and a strain representing a novel species, ES10.1) as well as strains of N. prasina, N. lucentensis, and N. tropica produced methanol-soluble toxins that paralyzed the motility of boar spermatozoa at <30 microg of crude extract (dry weight) x ml(-1). N. prasina, N. lucentensis, N. tropica, and strain ES10.1 caused cessation of motility by dissipating the mitochondrial membrane potential, Deltapsi, of the boar spermatozoa. Indoor strain 704a produced a substance that destroyed cell membrane barrier function and depleted the sperm cells of ATP. Indoor strain 64/93 was antagonistic towards Corynebacterium renale. Two indoor Nocardiopsis strains were xerotolerant, and all five utilized a wide range of substrates. This combined with the production of toxic substances suggests good survival and potential hazard to human health in water-damaged indoor environments. Two new species, Nocardiopsis exhalans sp. nov. (ES10.1T) and Nocardiopsis umidischolae sp. nov. (66/93T), are proposed based on morphology, chemotaxonomic and physiological characters, phylogenetic analysis, and DNA-DNA reassociations.
Project description:The apoptolidins are 20/21-membered macrolides produced by Nocardiopsis sp. FU40. Several members of this family are potent and remarkably selective inducers of apoptosis in cancer cell lines, likely via a distinct mitochondria associated target. To investigate the biosynthesis of this natural product, the complete genome of the apoptolidin producer Nocardiopsis sp. FU40 was sequenced and a 116 Kb region was identified containing a putative apoptolidin biosynthetic gene cluster. The apoptolidin gene cluster comprises a type I polyketide synthase, with 13 homologating modules, apparently initiated in an unprecedented fashion via transfer from a methoxymalonyl-acyl carrier protein loading module. Spanning approximately 39 open reading frames, the gene cluster was cloned into a series of overlapping cosmids and functionally validated by targeted gene disruption experiments in the producing organism. Disruption of putative PKS and P(450) genes delineated the roles of these genes in apoptolidin biosynthesis and chemical complementation studies demonstrated intact biosynthesis peripheral to the disrupted genes. This work provides insight into details of the biosynthesis of this biologically significant natural product and provides a basis for future mutasynthetic methods for the generation of non-natural apopotolidins.
Project description:Two sponge-derived actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163, were grown in co-culture and the presence of induced metabolites monitored by ¹H NMR. Ten known compounds, including angucycline, diketopiperazine and ?-carboline derivatives 1-10, were isolated from the EtOAc extracts of Actinokineospora sp. EG49 and Nocardiopsis sp. RV163. Co-cultivation of Actinokineospora sp. EG49 and Nocardiopsis sp. RV163 induced the biosynthesis of three natural products that were not detected in the single culture of either microorganism, namely N-(2-hydroxyphenyl)-acetamide (11), 1,6-dihydroxyphenazine (12) and 5a,6,11a,12-tetrahydro-5a,11a-dimethyl[1,4]benzoxazino[3,2-b][1,4]benzoxazine (13a). When tested for biological activity against a range of bacteria and parasites, only the phenazine 12 was active against Bacillus sp. P25, Trypanosoma brucei and interestingly, against Actinokineospora sp. EG49. These findings highlight the co-cultivation approach as an effective strategy to access the bioactive secondary metabolites hidden in the genomes of marine actinomycetes.
Project description:Novel and potential antimicrobial compounds are essential to tackle the frequently emerging multidrug-resistant pathogens and also to develop environment friendly agricultural practices. In the current study, endophytic actinomycetes from rhizome of Zingiber officinale were explored in terms of its diversity and bioactive properties. Fourteen different organisms were isolated, identified and screened for activity against Pythium myriotylum and human clinical pathogens. Among these, Nocardiopsis sp. ZoA1 was found to have highest inhibition with excellent antibacterial effects compared to standard antibiotics. Remarkable antibiofilm property was also shown by the extract of ZoA1. Its antifungal activity against Pythium and other common phytopathogens was also found to be promising as confirmed by scanning electron microscopic analysis. By PCR-based sequence analysis of phz E gene, the organism was confirmed for the genetic basis of phenazine biosynthesis. Further GC-MS analysis of Nocardiopsis sp. revealed the presence of various compounds including Phenol, 2,4-bis (1,1-dimethylethyl) and trans cinnamic acid which can have significant role in the observed result. The current study is the first report on endophytic Nocardiopsis sp. from ginger with promising applications. In vivo treatment of Nocardiopsis sp. on ginger rhizome has revealed its inhibition towards the colonization of P. myriotylum which makes the study to have promises to manage the severe diseases in ginger like rhizome rot.
Project description:A new cyclic hexapeptide, nocardiotide A (1), together with three known compounds-tryptophan (2), kynurenic acid (3), and 4-amino-3-methoxy benzoic acid (4)-were isolated and identified from the broth culture of Nocardiopsis sp. UR67 strain associated with the marine sponge Callyspongia sp. from the Red Sea. The structure elucidation of the isolated compounds were determined based on detailed spectroscopic data including ¹D and ²D nuclear magnetic resonance (NMR) experimental analyses in combination with high resolution electrospray ionization mass spectrometry (HR-ESI-MS), while the absolute stereochemistry of all amino acids components of nocardiotide A (1) was deduced using Marfey's method. Additionally, ten known metabolites were dereplicated using HR-ESI-MS analysis. Nocardiotide A (1) displayed significant cytotoxic effects towards the murine CT26 colon carcinoma, human HeLa cervix carcinoma, and human MM.1S multiple myeloma cell lines. The results obtained revealed sponge-associated Nocardiopsis as a substantial source of lead natural products with pronounced pharmacological activities.
Project description:Two new glycosylated macrolactones, apoptolidins E (5) and F (6), were isolated from fermentation of the actinomycete Nocardiopsis sp. and their structures assigned. Lacking the C16 and C20 oxygens of apoptolidin A (1), these macrolides are also the first members of this family to display a 4-O-methyl-l-rhamnose at C9 rather than a 6-deoxy-4-O-methyl-l-glucose.
Project description:Our study is to evaluate the potential bioactive compound of Nocardiopsis sp. GRG1 (KT235640) and its antibacterial activity against multi drug resistant strains (MDRS) on urinary tract infections (UTIs). Two brown algae samples were collected and were subjected to isolation of endophytic actinomycetes. 100 strains of actinomycetes were isolated from algal samples based on observation of morphology and physiological characters. 40 strains were active in antagonistic activity against various clinical pathogens. Among the strains, 10 showed better antimicrobial activity against MDRS on UTIs. The secondary metabolite of Nocardiopsis sp. GRG1 (KT235640) has showed tremendous antibacterial activity against UTI pathogens compared to other strains. Influence of various growth parameters were used for synthesis of secondary metabolites, such as optimum pH 7, incubation time 5-7 days, temperature (30 °C), salinity (5%), fructose and mannitol as the suitable carbon and nitrogen sources. At 100 ?g/ml concentration MIC of Nocardiopsis sp. GRG1 (KT235640) showed highest percentage of inhibition against Proteus mirabilis (85%), and E.coli, Staphylococcus auerues, Psuedomonas aeroginasa, Enterobactor sp and Coagulinase negative staphylococci 78-85% respectively.
Project description:The biosynthesis of nanoparticles has been proposed as a cost effective environmental friendly alternative to chemical and physical methods. Microbial synthesis of nanoparticles is under exploration due to wide biomedical applications, research interest in nanotechnology and microbial biotechnology. In the present study, an ecofriendly process for the synthesis of nanoparticles using a novel Nocardiopsis sp. MBRC-1 has been attempted. We used culture supernatant of Nocardiopsis sp. MBRC-1 for the simple and cost effective green synthesis of silver nanoparticles. The reduction of silver ions occurred when silver nitrate solution was treated with the Nocardiopsis sp. MBRC-1 culture supernatant at room temperature. The nanoparticles were characterized by UV-visible, TEM, FE-SEM, EDX, FTIR, and XRD spectroscopy. The nanoparticles exhibited an absorption peak around 420 nm, a characteristic surface plasmon resonance band of silver nanoparticles. They were spherical in shape with an average particle size of 45 ± 0.15 nm. The EDX analysis showed the presence of elemental silver signal in the synthesized nanoparticles. The FTIR analysis revealed that the protein component in the form of enzyme nitrate reductase produced by the isolate in the culture supernatant may be responsible for reduction and as capping agents. The XRD spectrum showed the characteristic Bragg peaks of 1 2 3, 2 0 4, 0 4 3, 1 4 4, and 3 1 1 facets of the face centered cubic silver nanoparticles and confirms that these nanoparticles are crystalline in nature. The prepared silver nanoparticles exhibited strong antimicrobial activity against bacteria and fungi. Cytotoxicity of biosynthesized AgNPs against in vitro human cervical cancer cell line (HeLa) showed a dose-response activity. IC50 value was found to be 200 ?g/mL of AgNPs against HeLa cancer cells. Further studies are needed to elucidate the toxicity and the mechanism involved with antimicrobial and anticancer activity of the synthesized AgNPs as nanomedicine.