Project description:The above-ground surfaces of terrestrial plants, the phyllosphere, comprise the main interface between the terrestrial biosphere and solar radiation. It is estimated to host up to 10(26) microbial cells that may intercept part of the photon flux impinging on the leaves. Based on 454-pyrosequencing-generated metagenome data, we report on the existence of diverse microbial rhodopsins in five distinct phyllospheres from tamarisk (Tamarix nilotica), soybean (Glycine max), Arabidopsis (Arabidopsis thaliana), clover (Trifolium repens) and rice (Oryza sativa). Our findings, for the first time describing microbial rhodopsins from non-aquatic habitats, point towards the potential coexistence of microbial rhodopsin-based phototrophy and plant chlorophyll-based photosynthesis, with the different pigments absorbing non-overlapping fractions of the light spectrum.
Project description:Arthrobacter chlorophenolicus A6 is a 4-chlorophenol degrading soil bacterium with high phyllosphere colonization capacity. Till now the genetic basis for the phyllosphere competency of Arthrobacter or other pollutant-degrading bacteria is uncertain. We investigated global gene expression profile of A. chlorophenolicus grown in the phyllosphere of common bean (Phaseolus vulgaris) compared to growth on agar surfaces. We designed transcriptome arrays and investigated which genes had different transcript levels in the phyllosphere of common bean (Phaseolus vulgaris) as compared to agar surfaces. Since water availability is considered an important factor in phyllosphere survival and activity, we included both high and low relative humidity treatments for the phyllosphere-grown cells. In addition, we determined the expression profile under pollutant exposure by the inclusion of two agar surface treatments, i.e. with and without 4-chlorophenol.
Project description:Methylobacterium inhabits the phyllosphere of a large number of plants. We herein report the results of comparative metagenome analyses on methylobacterial communities of soybean plants grown in an experimental field in Tohoku University (Kashimadai, Miyagi, Japan). Methylobacterium was identified as the most dominant genus (33%) among bacteria inhabiting soybean stems. We classified plant-derived Methylobacterium species into Groups I, II, and III based on 16S rRNA gene sequences, and found that Group I members (phylogenetically close to M. extorquens) were dominant in soybean-associated Methylobacterium. By comparing 29 genomes, we found that all Group I members possessed a complete set of genes for the N-methylglutamate pathway for methylamine utilization, and genes for urea degradation (urea carboxylase, urea amidolyase, and conventional urease). Only Group I members and soybean methylobacterial isolates grew in a culture supplemented with methylamine as the sole carbon source. They utilized urea or allantoin (a urea-related compound in legumes) as the sole nitrogen source; however, group III also utilized these compounds. The utilization of allantoin may be crucial in soybean-bacterial interactions because allantoin is a transported form of fixed nitrogen in legume plants. Soybean-derived Group I strain AMS5 colonized the model legume Lotus japonicus well. A comparison among the 29 genomes of plant-derived and other strains suggested that several candidate genes are involved in plant colonization such as csgG (curli fimbriae). Genes for the N-methylglutamate pathway and curli fimbriae were more abundant in soybean microbiomes than in rice microbiomes in the field. Based on these results, we discuss the lifestyle of Methylobacterium in the legume phyllosphere.
Project description:The phyllosphere microbiome is increasingly recognised as an influential component of plant physiology, yet it remains unclear whether stable host-microbe associations generally exist in the phyllosphere. Leptospermum scoparium (m?nuka) is a tea tree indigenous to New Zealand, and honey derived from m?nuka is widely known to possess unique antimicrobial properties. However, the host physiological traits associated with these antimicrobial properties vary widely, and the specific cause of such variation has eluded scientists despite decades of research. Notably, the m?nuka phyllosphere microbiome remains uncharacterised, and its potential role in mediating host physiology has not been considered. Working within the prevailing core microbiome conceptual framework, we hypothesise that the phyllosphere microbiome of m?nuka exhibits specific host association patterns congruent with those of a microbial community under host selective pressure (null hypothesis: the m?nuka phyllosphere microbiome is recruited stochastically from the surrounding environment). To examine our hypothesis, we characterised the phyllosphere and associated soil microbiomes of five distinct and geographically distant m?nuka populations across the North Island of New Zealand. We identified a habitat-specific and relatively abundant core microbiome in the m?nuka phyllosphere, which was persistent across all samples. In contrast, non-core phyllosphere microorganisms exhibited significant variation across individual host trees and populations that was strongly driven by environmental and spatial factors. Our results demonstrate the existence of a dominant and ubiquitous core microbiome in the phyllosphere of m?nuka, supporting our hypothesis that phyllosphere microorganisms of m?nuka exhibit specific host association and potentially mediate physiological traits of this nationally and culturally treasured indigenous plant. In addition, our results illustrate biogeographical patterns in m?nuka phyllosphere microbiomes and offer insight into factors contributing to phyllosphere microbiome assembly.
Project description:The phyllosphere, which lato sensu consists of the aerial parts of plants, and therefore primarily, of the set of photosynthetic leaves, is one of the most prevalent microbial habitats on earth. Phyllosphere microbiota are related to original and specific processes at the interface between plants, microorganisms and the atmosphere. Recent -omics studies have opened fascinating opportunities for characterizing the spatio-temporal structure of phyllosphere microbial communities in relation with structural, functional, and ecological properties of host plants, and with physico-chemical properties of the environment, such as climate dynamics and trace gas composition of the surrounding atmosphere. This review will analyze recent advances, especially those resulting from environmental genomics, and how this novel knowledge has revealed the extent of the ecosystemic impact of the phyllosphere at the interface between plants and atmosphere. Highlights • The phyllosphere is one of the most prevalent microbial habitats on earth. • Phyllosphere microbiota colonize extreme, stressful, and changing environments. • Plants, phyllosphere microbiota and the atmosphere present a dynamic continuum. • Phyllosphere microbiota interact with the dynamics of volatile organic compounds and atmospheric trace gasses.
Project description:The phyllosphere supports a tremendous diversity of microbes, which have the potential to influence plant biogeography and ecosystem function. Although biocontrol agents (BCAs) have been used extensively for controlling plant diseases, the ecological effects of BCAs on phyllosphere bacteria and the relationships between phyllosphere community and plant health are poorly understood. In this study, we explored the control efficiency of two BCA communities on bacterial wildfire disease by repeatedly spraying BCAs on tobacco leaves. The results of field tests showed that BCAs used in our study, especially BCA_B, had remarkable control effects against tobacco wildfire disease. The higher control efficiency of BCA_B might be attributed to a highly diverse and complex community in the phyllosphere. By 16S ribosomal RNA gene sequencing, we found that phyllosphere microbial community, including community diversity, taxonomic composition and microbial interactions, changed significantly by application of BCAs. According to the correlation analysis, it showed that wildfire disease infection of plants was negatively related to phyllosphere microbial diversity, indicating a highly diverse community in the phyllosphere might prevent pathogens invasion and colonization. In addition, we inferred that a more complex network in the phyllosphere might be beneficial for decreasing the chances of bacterial wildfire outbreak, and the genera of Pantoea and Sphingomonas might play important roles in wildfire disease suppression. These correlations between phyllosphere community and plant health will improve our understanding on the ecological function of phyllosphere community on plants.
Project description:The phyllosphere of floating macrophytes in paddy soil ecosystems, a unique habitat, may support large microbial communities but remains largely unknown. We took Wolffia australiana as a representative floating plant and investigated its phyllosphere bacterial community and the underlying driving forces of community modulation in paddy soil ecosystems using Illumina HiSeq 2000 platform-based 16S rRNA gene sequence analysis. The results showed that the phyllosphere of W. australiana harbored considerably rich communities of bacteria, with Proteobacteria and Bacteroidetes as the predominant phyla. The core microbiome in the phyllosphere contained genera such as Acidovorax, Asticcacaulis, Methylibium, and Methylophilus. Complexity of the phyllosphere bacterial communities in terms of class number and ?-diversity was reduced compared to those in corresponding water and soil. Furthermore, the bacterial communities exhibited structures significantly different from those in water and soil. These findings and the following redundancy analysis (RDA) suggest that species sorting played an important role in the recruitment of bacterial species in the phyllosphere. The compositional structures of the phyllosphere bacterial communities were modulated predominantly by water physicochemical properties, while the initial soil bacterial communities had limited impact. Taken together, the findings from this study reveal the diversity and uniqueness of the phyllosphere bacterial communities associated with the floating macrophytes in paddy soil environments.
Project description:<h4>Unlabelled</h4>Bacteria living on the aerial parts of plants (the phyllosphere) are globally abundant and ecologically significant communities and can have significant effects on their plant hosts. Despite their importance, little is known about the ecological processes that drive phyllosphere dynamics. Here, we describe the development of phyllosphere bacterial communities over time on the model plant Arabidopsis thaliana in a controlled greenhouse environment. We used a large number of replicate plants to identify repeatable dynamics in phyllosphere community assembly and reconstructed assembly history by measuring the composition of the airborne community immigrating to plant leaves. We used more than 260,000 sequences from the v5v6 hypervariable region of the 16S rRNA gene to characterize bacterial community structure on 32 plant and 21 air samples over 73 days. We observed strong, reproducible successional dynamics: phyllosphere communities initially mirrored airborne communities and subsequently converged to a distinct community composition. While the presence or absence of particular taxa in the phyllosphere was conserved across replicates, suggesting strong selection for community composition, the relative abundance of these taxa was highly variable and related to the spatial association of individual plants. Our results suggest that stochastic events in early colonization, coupled with dispersal limitation, generated alternate trajectories of bacterial community assembly within the context of deterministic selection for community membership.<h4>Importance</h4>Commensal bacteria associated with plants help protect their hosts against infection and promote growth. Bacteria associated with plant leaves (the "phyllosphere") are highly abundant and diverse communities, but we have very limited information about their ecology. Here, we describe the formation of phyllosphere communities on the plant model organism Arabidopsis thaliana. We grew a large number of plants in a greenhouse and measured bacterial diversity in the phyllosphere throughout the Arabidopsis life cycle. We also measured the diversity of airborne microbes landing on leaves. Our findings show that plants develop distinctive phyllosphere bacterial communities drawn from low-abundance air populations, suggesting the plant environment is favorable for particular organisms and not others. However, we also found that the relative abundances of bacteria in the phyllosphere are determined primarily by the physical proximity of individual plants. This suggests that a mixture of selective and random forces shapes phyllosphere communities.
Project description:The altitudinal effects on the distributions of phyllosphere fungal assemblages in conspecific plants remain poorly elucidated. To address this, phyllosphere fungal communities associated with Mussaenda shikokiana were investigated at four sites across a 350 m elevation gradient in a subtropical forest by employing Illumina metabarcoding of the fungal internal transcribed spacer 2 (ITS2) region. Our results demonstrated that phyllosphere fungal assemblages with a single host possessed high taxonomic diversity and multiple trophic guilds. OTU richness was significantly influenced by elevation. The elevation gradient also entailed distinct shifts in the community composition of phyllosphere fungi, which was significantly related to geographical distance and mean annual temperature (MAT). Additionally, comparison of phyllosphere fungal networks showed reduced connectivity with increasing elevation. Our data provide insights on the distribution and interactions of the phyllosphere fungal community associated with a single host along a short elevation gradient.
Project description:BACKGROUND:The phyllosphere is an important microbial habitat, but our understanding of how plant hosts drive the composition of their associated leaf microbial communities and whether taxonomic associations between plants and phyllosphere microbes represent adaptive matching remains limited. In this study, we quantify bacterial functional diversity in the phyllosphere of 17 tree species in a diverse neotropical forest using metagenomic shotgun sequencing. We ask how hosts drive the functional composition of phyllosphere communities and their turnover across tree species, using host functional traits and phylogeny. RESULTS:Neotropical tree phyllosphere communities are dominated by functions related to the metabolism of carbohydrates, amino acids, and energy acquisition, along with environmental signalling pathways involved in membrane transport. While most functional variation was observed within communities, there is non-random assembly of microbial functions across host species possessing different leaf traits. Metabolic functions related to biosynthesis and degradation of secondary compounds, along with signal transduction and cell-cell adhesion, were particularly important in driving the match between microbial functions and host traits. These microbial functions were also evolutionarily conserved across the host phylogeny. CONCLUSIONS:Functional profiling based on metagenomic shotgun sequencing offers evidence for the presence of a core functional microbiota across phyllosphere communities of neotropical trees. While functional turnover across phyllosphere communities is relatively small, the association between microbial functions and leaf trait gradients among host species supports a significant role for plant hosts as selective filters on phyllosphere community assembly. This interpretation is supported by the presence of phylogenetic signal for the microbial traits driving inter-community variation across the host phylogeny. Taken together, our results suggest that there is adaptive matching between phyllosphere microbes and their plant hosts. Video abstract.