Project description:Cryptococcus gattii is one of the causative agents of human cryptococcosis. Highly virulent strains of serotype B C. gattii have been studied in detail, but little information is available on the pathogenic properties of serotype C isolates. In this study, we analyzed pathogenic determinants in three serotype C C. gattii isolates (106.97, ATCC 24066 and WM 779). Isolate ATCC 24066 (molecular type VGIII) differed from isolates WM 779 and 106.97 (both VGIV) in capsule dimensions, expression of CAP genes, chitooligomer distribution, and induction of host chitinase activity. Isolate WM 779 was more efficient than the others in producing pigments and all three isolates had distinct patterns of reactivity with antibodies to glucuronoxylomannan. This great phenotypic diversity reflected in differential pathogenicity. VGIV isolates WM 779 and 106.97 were similar in their ability to cause lethality and produced higher pulmonary fungal burden in a murine model of cryptococcosis, while isolate ATCC 24066 (VGIII) was unable to reach the brain and caused reduced lethality in intranasally infected mice. These results demonstrate a high diversity in the pathogenic potential of isolates of C. gattii belonging to the molecular types VGIII and VGIV.
Project description:The Cryptococcus species complex contains two sibling taxa, Cryptococcus neoformans and Cryptococcus gattii. Both species are basidiomycetous yeasts and major pathogens of humans and other mammals. Genotyping methods have identified major haploid molecular types of C. neoformans (VNI, VNII, VNB and VNIV) and of C. gattii (VGI, VGII, VGIII and VGIV). To investigate the phylogenetic relationships among these haploid genotypes, we selected 73 strains from 2000 globally collected isolates investigated in our previous typing studies, representing each of these genotypes and carried out multigene sequence analyses using four genetically unlinked nuclear loci, ACT1, IDE, PLB1 and URA5. The separate or combined sequence analyses of all four loci revealed seven clades with significant support for each molecular type. However, three strains of each species revealed some incongruence between the original molecular type and the sequence-based type obtained here. The topology of the individual gene trees was identical for each clade of C. neoformans but incongruent for the clades of C. gattii indicating recent recombination events within C. gattii. There was strong evidence of recombination in the global VGII population. Both parsimony and likelihood analyses supported three major clades of C. neoformans (VNI/VNB, VNII and VNIV) and four major clades of C. gattii (VGI, VGII, VGIII and VGIV). The sequence variation between VGI, VGIII and VGIV was similar to that between VNI/VNB and VNII. MATa was for the first time identified for VGIV. The VNIV and VGII clades are basal to the C. neoformans or the C. gattii clade, respectively. Divergence times among the seven haploid monophyletic lineages in the Cryptococcus species complex were estimated by applying the hypothesis of the molecular clock. The genetic variation found among all of these haploid monophyletic lineages indicates that they warrant varietal status.
Project description:Cryptococcus neoformans and Cryptococcus gattii are the main pathogenic species of invasive cryptococcosis among the Cryptococcus species. Taxonomic studies have shown that these two taxa have different genotypes or molecular types with biological and ecoepidemiological peculiarities. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been proposed as an alternative method for labor-intensive methods for C. neoformans and C. gattii genotype differentiation. However, Vitek MS, one of the commercial MALDI-TOF MS instruments, has not been yet been evaluated for this purpose. Thus, we constructed an in-house database with reference strains belonging to the different C. neoformans (VNI, VNII, VNIII, and VNIV) and C. gattii (VGI, VGII, VGIII, and VGIV) major molecular types by using the software Saramis Premium (bioMérieux, Marcy-l'Etoile, France). Then, this new database was evaluated for discrimination of the different genotypes. Our in-house database provided correct identification for all C. neoformans and C. gattii genotypes; however, due to the intergenotypic mass spectral similarities, a careful postanalytic evaluation is necessary to provide correct genotype identification.
Project description:In order to elucidate the distribution of Cryptococcus neoformans and C. gattii in the Mediterranean basin, an extensive environmental survey was carried out during 2012-2015. A total of 302 sites located in 12 countries were sampled, 6436 samples from 3765 trees were collected and 5% of trees were found to be colonized by cryptococcal yeasts. Cryptococcus neoformans was isolated from 177 trees and C. gattii from 13. Cryptococcus neoformans colonized 27% of Ceratonia, 10% of Olea, Platanus and Prunus trees and a lower percentage of other tree genera. The 13 C. gattii isolates were collected from five Eucalyptus, four Ceratonia, two Pinus and two Olea trees. Cryptococcus neoformans was distributed all around the Mediterranean basin, whereas C. gattii was isolated in Greece, Southern Italy and Spain, in agreement with previous findings from both clinical and environmental sources. Among C. neoformans isolates, VNI was the prevalent molecular type but VNII, VNIV and VNIII hybrid strains were also isolated. With the exception of a single VGIV isolate, all C. gattii isolates were VGI. The results confirmed the presence of both Cryptococcus species in the Mediterranean environment, and showed that both carob and olive trees represent an important niche for these yeasts.
Project description:Cryptococcus gattii consists of four cryptic species, VGI, VGII, VGIII, and VGIV. Herein, a duplex PCR assay using two primer pairs targeting the vacuolar membrane gene and the intergenic spacer region was developed. It successfully distinguished the cryptic species according to the distinct size of the amplicons.
Project description:Cryptococcus gattii has been the cause of an ongoing outbreak starting in 1999 on Vancouver Island, British Columbia and spreading to mainland Canada and the US Pacific Northwest. In the course of the outbreak, C. gattii has been identified outside of its previously documented climate, habitat, and host disease. Genotyping of C. gattii is essential to understand the ecological and geographical expansion of this emerging pathogen.We developed and validated a mismatch amplification mutation assay (MAMA) real-time PCR panel for genotyping C. gattii molecular types VGI-VGIV and VGII subtypes a,b,c. Subtype assays were designed based on whole-genome sequence of 20 C. gattii strains. Publically available multilocus sequence typing (MLST) data from a study of 202 strains was used for the molecular type (VGI-VGIV) assay design. All assays were validated across DNA from 112 strains of diverse international origin and sample types, including animal, environmental and human.Validation revealed each assay on the panel is 100% sensitive, specific and concordant with MLST. The assay panel can detect down to 0.5 picograms of template DNA.The (MAMA) real-time PCR panel for C. gattii accurately typed a collection of 112 diverse strains and demonstrated high sensitivity. This is a time and cost efficient method of genotyping C. gattii best suited for application in large-scale epidemiological studies.