Project description:The species recognition and identification of aspergilli and their teleomorphs is discussed. A historical overview of the taxonomic concepts starting with the monograph of Raper & Fennell (1965) is given. A list of taxa described since 2000 is provided. Physiological characters, particularly growth rates and the production of extrolites, often show differences that reflect phylogenetic species boundaries and greater emphasis should be placed on extrolite profiles and growth characteristics in species descriptions. Multilocus sequence-based phylogenetic analyses have emerged as the primary tool for inferring phylogenetic species boundaries and relationships within subgenera and sections. A four locus DNA sequence study covering all major lineages in Aspergillus using genealogical concordance theory resulted in a species recognition system that agrees in part with phenotypic studies and reveals the presence of many undescribed species not resolved by phenotype. The use of as much data from as many sources as possible in making taxonomic decisions is advocated. For species identification, DNA barcoding uses a short genetic marker in an organism"s DNA to quickly and easily identify it to a particular species. Partial cytochrome oxidase subunit 1 sequences, which are used for barcoding animal species, were found to have limited value for species identification among black aspergilli. The various possibilities are discussed and at present partial beta-tubulin or calmodulin are the most promising loci for Aspergillus identification. For characterising Aspergillus species one application would be to produce a multilocus phylogeny, with the goal of having a firm understanding of the evolutionary relationships among species across the entire genus. DNA chip technologies are discussed as possibilities for an accurate multilocus barcoding tool for the genus Aspergillus.
Project description:The echinocandin caspofungin is a potent inhibitor of the activity of 1,3-beta-D-glucan synthase from Aspergillus flavus, Aspergillus terreus, and Aspergillus nidulans. In murine models of disseminated infection, caspofungin prolonged survival and reduced the kidney fungal burden. Caspofungin was at least as effective as amphotericin B against these filamentous fungi in vivo.
Project description:The origin of isolates routinely used by the community of Aspergillus fumigatus researchers is periodically a matter of intense discussion at our centre, as the construction of recombinant isolates have sometimes followed convoluted routes, the documentation describing their lineages is fragmented, and the nomenclature is confusing. As an aide memoir, not least for our own benefit, we submit the following account and tabulated list of strains (Table 1) in an effort to collate all of the relevant information in a single, easily accessible document. To maximise the accuracy of this record we have consulted widely amongst the community of Medical Mycologists using these strains. All the strains described are currently available from one of these organisations, namely the Fungal Genetics Stock Centre (FGSC), FungiDB, Ensembl Fungi and The National Collection of Pathogenic Fungi (NCPF) at Public Health England. Display items from this manuscript are also featured on FungiDB.<h4>Lay abstract</h4>We present a concise overview on the definition, origin and unique genetic makeup of the Aspergillus fumigatus isolates routinely in use by the fungal research community, to aid researchers to describe past and new strains and the experimental differences observed more accurately.
Project description:Genomic DNA from five strains, Aspergillus fumigatus Af71, Aspergillus fumigatus Af294, Aspergillus clavatus, Neosartorya fenneliae, and Neosartorya fischeri, were co-hybridized with that of Aspergillus fumigatus Af293 and compared.
Project description:Aspergillus ochraceus is a rare pulmonary pathogen. A 39 year old male with COPD and chronic granulomatous disease presented with severe breathlessness and recurrent infections. CT scan demonstrated multiple pulmonary nodules diagnosed as chronic pulmonary aspergillosis. The patient's sputum grew Aspergillus ochraceus thrice over 6 months, alongside positive Aspergillus IgG and serum galactomannan. Despite treatment with itraconazole, the patient continued to be symptomatic. We present the first case associating A. ochraceus with chronic pulmonary aspergillosis.
Project description:Aspergillus is a genus of ubiquitous fungi that are pathologically & therapeutically important. Aspergillus Secondary Metabolites Database (A2MDB) is a curated compendium of information on Aspergillus & its secondary metabolome. A2MDB catalogs 807 unique non-redundantsecondary metabolites derived from 675 Aspergillus species. A2MDB has a compilation of 100 cellular targets of secondary metabolites, 44 secondary metabolic pathways, 150 electron and light microscopy images of various Aspergillus species. A phylogenetic representation of over 2500 strains has been provided. A2MDB presents a detailed chemical information of secondary metabolites and their mycotoxins. Molecular docking models of metabolite-target protein interactions have been put together. A2MDB also has epidemiological data representing Aspergillosis and global occurrence of Aspergillus species. Furthermore a novel classification of Aspergillosis along with 370 case reports with images, were made available. For each metabolite catalogued, external links to related databases have been provided. All this data is available on A2MDB, launched through Indian Institute of Chemical Technology, Hyderabad, India, as an open resource http://www.iictindia.org/A2MDB . We believe A2MDB is of practical relevance to the scientific community that is in pursuit of novel therapeutics.
Project description:Xerophilic fungal species of the genus Aspergillus are economically highly relevant due to their ability to grow on low water activity substrates causing spoilage of stored goods and animal feeds. These fungi can synthesize a variety of secondary metabolites, many of which show animal toxicity, creating a health risk for food production animals and to humans as final consumers, respectively. Animal feeds used for rabbit, chinchilla and rainbow trout production in Argentina were analysed for the presence of xerophilic Aspergillus section Aspergillus species. High isolation frequencies (>60%) were detected in all the studied rabbit and chinchilla feeds, while the rainbow trout feeds showed lower fungal charge (25%). These section Aspergillus contaminations comprised predominantly five taxa. Twenty isolates were subjected to taxonomic characterization using both ascospore SEM micromorphology and two independent DNA loci sequencing. The secondary metabolite profiles of the isolates were determined qualitatively by HPLC-MS. All the isolates produced neoechinulin A, 17 isolates were positive for cladosporin and echinulin, and 18 were positive for neoechinulin B. Physcion and preechinulin were detected in a minor proportion of the isolates. This is the first report describing the detailed species composition and the secondary metabolite profiles of Aspergillus section Aspergillus contaminating animal feeds.
Project description:Fungal pathogens are a global threat to human health. For example, fungi from the genus Aspergillus cause a spectrum of diseases collectively known as aspergillosis. Most of the >200,000 life-threatening aspergillosis infections per year worldwide are caused by Aspergillus fumigatus. Recently, molecular typing techniques have revealed that aspergillosis can also be caused by organisms that are phenotypically similar to A. fumigatus but genetically distinct, such as Aspergillus lentulus and Aspergillus fumigatiaffinis. Importantly, some of these so-called cryptic species are thought to exhibit different virulence and drug susceptibility profiles than A. fumigatus, however, our understanding of their biology and pathogenic potential has been stymied by the lack of genome sequences and phenotypic profiling of multiple clinical strains. To fill this gap, we phenotypically characterized the virulence and drug susceptibility of 15 clinical strains of A. fumigatus, A. lentulus, and A. fumigatiaffinis from Spain and sequenced their genomes. We found heterogeneity in drug susceptibility across species and strains. We further found heterogeneity in virulence within each species but no significant differences in the virulence profiles between the three species. Genes known to influence drug susceptibility (cyp51A and fks1) vary in paralog number and sequence among these species and strains and correlate with differences in drug susceptibility. Similarly, genes known to be important for virulence in A. fumigatus showed variability in number of paralogs across strains and across species. Characterization of the genomic similarities and differences of clinical strains of A. lentulus, A. fumigatiaffinis, and A. fumigatus that vary in disease-relevant traits will advance our understanding of the variance in pathogenicity between Aspergillus species and strains that are collectively responsible for the vast majority of aspergillosis infections in humans.
Project description:The Central Aspergillus Data REpository (CADRE; http://www.cadre-genomes.org.uk) is a public resource for genomic data extracted from species of Aspergillus. It provides an array of online tools for searching and visualising features of this significant fungal genus. CADRE arose from a need within the medical community to understand the human pathogen Aspergillus fumigatus. Due to the paucity of Aspergillus genomic resources 10 years ago, the long-term goal of this project was to collate and maintain Aspergillus genomes as they became available. Since our first release in 2004, the resource has expanded to encompass annotated sequence for eight other Aspergilli and provides much needed support to the international Aspergillus research community. Recent developments, however, in sequencing technology are creating a vast amount of genomic data and, as a result, we shortly expect a tidal wave of Aspergillus data. In preparation for this, we have upgraded the database and software suite. This not only enables better management of more complex data sets, but also improves annotation by providing access to genome comparison data and the integration of high-throughput data.
Project description:Human lungs are constantly exposed to a large number of Aspergillus spores which are present in ambient air. These spores are usually harmless to immunocompetent subjects but can produce a symptomatic disease in patients with impaired antifungal defense. In a small percentage of patients, the trachea and bronchi may be the main or even the sole site of Aspergillus infection. The clinical entities that may develop in tracheobronchial location include saprophytic, allergic and invasive diseases. Although this review is focused on invasive Aspergillus tracheobronchial infections, some aspects of allergic and saprophytic tracheobronchial diseases are also discussed in order to present the whole spectrum of tracheobronchial aspergillosis. To be consistent with clinical practice, an approach basing on specific conditions predisposing to invasive Aspergillus tracheobronchial infections is used to present the differences in the clinical course and prognosis of these infections. Thus, invasive or potentially invasive Aspergillus airway diseases are discussed separately in three groups of patients: (1) lung transplant recipients, (2) highly immunocompromised patients with hematologic malignancies and/or patients undergoing hematopoietic stem cell transplantation, and (3) the remaining, less severely immunocompromised patients or even immunocompetent subjects.