Project description:Insects could be potential nutritional sources both for humans and animals. Among these, Hermetia illucens, with good amount of chitin and proteins, represents a suitable diet replacement for laying hens. Little is known about insect diet effects on the microbial ecology of the gastrointestinal tract and bacterial metabolites production. In this study we investigated the effect of H. illucens larvae meal administration on cecal microbiota and short chain fatty acids (SCFAs) production in laying hens. 16S rDNA sequencing showed strong differences between cecal microbiota of soybean (SD) and insect diet (ID) groups both in type and relative abundance (unweighted and weighted beta diversity) of microbial species. In particular, Bacteroides plebeius, Elusimicrobium minutum, Alkaliphilus transvaalensis, Christensenella minuta, Vallitalea guaymasensis and Flavonifractor plautii represented the principal contributors of changes in gut microbiota composition of ID group (FDR p-values?<?0.05). Of these, F. plautii, C. minuta and A. transvaalensis have the potential to degrade the chitin's insect meal and correlated with the observed high levels of gut SCFAs produced in ID group. These microorganisms may thus connect the chitin degradation with high SCFAs production. Our results suggest H. illucens as a potential prebiotic by well feeding gut microbiota.
Project description:BACKGROUND:Host genotype plays a crucial role in microbial composition of laying hens, which may lead to dissimilar odor gas production. The objective of this study was to investigate the relationship among layer breed, microbial structure and odor production. RESULTS:Thirty Hy-Line Gray and thirty Lohmann Pink laying hens were used in this study to determine the impact of cecal microbial structure on odor production of laying hens. The hens were managed under the same husbandry and dietary regimes. Results of in vivo experiments showed a lower hydrogen sulfide (H2S) production from Hy-Line hens and a lower concentration of soluble sulfide (S2-) but a higher concentration of butyrate in the cecal content of the Hy-Line hens compared to Lohmann Pink hens (P < 0.05), which was consistent with the in vitro experiments (P < 0.05). However, ammonia (NH3) production was not different between genotypes (P > 0.05). Significant microbial structural differences existed between the two breed groups. The relative abundance of some butyrate producers (including Butyricicoccus, Butyricimonas and Roseburia) and sulfate-reducing bacteria (including Mailhella and Lawsonia) were found to be significantly correlated with odor production and were shown to be different in the 16S rRNA and PCR data between two breed groups. Furthermore, some bacterial metabolism pathways associated with energy extraction and carbohydrate utilization (oxidative phosphorylation, pyruvate metabolism, energy metabolism, two component system and secretion system) were overrepresented in the Hy-Line hens, while several amino acid metabolism-associated pathways (amino acid related enzymes, arginine and proline metabolism, and alanine-aspartate and glutamate metabolism) were more prevalent in the Lohmann hens. CONCLUSION:The results of this study suggest that genotype of laying hens influence cecal microbiota, which in turn modulates their odor production. Our study provides references for breeding and enteric manipulation for defined microbiota to reduce odor gas emission.
Project description:The objective of this study was to investigate the effects of higher vitamins supplementation level on the performance, immunity, and intestinal microbiota of old laying hens. Twelve birds were randomly chosen from 312 healthy, 65-wk-old Hy-Line Brown layers for sampling after a 7-wk acclimation period. The remaining 300 hens were randomly allocated to 1 of 4 dietary treatments for a 13-wk feeding trial: basal diet (CON), basal diet with 2-fold supplementation level of lipid-soluble vitamins (LV), 2-fold supplementation level of water-soluble vitamins (WV), or 2-fold supplementation level of both lipid-soluble and water-soluble vitamins (BV), respectively. Compared with 72-wk-old laying hens, the 85-wk-old laying hens showed declined egg quality, which implied by inferior eggshell strength and yolk color (P < 0.05). However, after 13 wks feeding trial, the birds in WV group had higher yellowness of yolk color, and LV group had increased laying rate (P < 0.05) compared with CON. Meanwhile, WV and/or BV groups showed improved GSH/GSSG levels in liver and increased secretory immunoglobulin A concentrations in jejunum compared with CON (P < 0.05). In addition, higher dietary vitamin supplementation levels significantly altered the composition of intestinal microbiota, as evidenced by increased abundance of ileal Lactobacillus, whereas reduced richness of ileal Romboutsia, Turicibacter, and cecal Faecalibacterium (P < 0.05) in WV group and increased cecal Megasphaera and Phascolarctobacterium (P < 0.05) in LV group compared with CON group. In conclusion, higher vitamin supplementation levels in the diet could improve laying performance and egg quality of aged hens, which was closely correlated with the increased abundance of beneficial microbiota in the intestine.
Project description:Tibetan Chickens should have unique gastrointestinal microbiota because of their particular habitats. Thus, the aim of this study was to investigate the cecal microbiota of Tibetan Chickens from five typical high-altitude regions of China. Lohmann egg-laying hens (LMs) and Daheng broiler chickens (DHs) were chosen as controls. The cecal bacterial populations of Tibetan Chickens were surveyed by high-throughput sequencing (HTS) of the bacterial 16S rRNA hypervariable region V3-V4 (16S rRNAV3-V4) combined with community-fingerprinting analysis of the 16S rRNA gene based on polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results revealed that the majority of cecal microbiota differed between the Tibetan Chicken and LM/DH. The microbial communities in the cecum were composed of 16 phyla, 28 classes, 36 orders, 57 families, 101 genera, and 189 species. Represented phyla were Bacteroidetes (>47%), Firmicutes (>18.8%), Spirochaetae (>0.3%), and Proteobacteria (>0.4%). Bacteroides and the RC9 gut group were the two most abundant genera. There were relatively more Christensenellaceae, Subdoligranulum, Spirochaeta, and Treponema in Tibetan Chickens, whereas there were more Phascolarctobacterium, Faecalibacterium, Megamonas, and Desulfovibrio in LMs and DHs. The cecal microbiota of Tibetan Chicken have slightly diverged due to exposure to different geographic environments. Differences in the intestinal bacterial communities of Tibetan Chicken and LM/DH were noted.
Project description:The experiment was to determine the chronic effects of two transgenic maize lines that contained the mCry1Ac gene from the Bacillus thuringiensis strain (BT) and the maroACC gene from Agrobacterium tumefaciens strain (CC), respectively, on ileal microbiota of laying hens. Seventy-two laying hens were randomly assigned to one of the three dietary treatments for 12 weeks, as follows: (1) nontransgenic near-isoline maize-based diet (CT diet), (2) BT maize-based diet (BT diet), and (3) CC maize-based diet (CC diet). Ileum histological examination did not indicate a chronic effect of two transgenic maize diets. Few differences were observed in any bacterial taxa among the treatments that used high-throughput 16S rRNA gene sequencing. The only differences that were observed for bacterial genera were that Bifidobacterium belong within the Bifidobacteriaceae family tended to be greater (p = 0.114) abundant in hens fed the transgenic maize-based diet than in hens fed the CT diet. Birds that consumed the CC maize diet tended to have less abundance (p = 0.135) of Enterobacteriaceae family in the ileum than those that consumed the CT maize diet. These results indicate the lack of adverse effects of the BT maize and the CC maize lines on the ileal microbiota of hens for long term and provide important data regarding biosafety assessment of the transgenic maize lines.
Project description:OBJECTIVE:As laying hens become aged, laying performance and egg quality are generally impaired. One of the practical methods to rejuvenate production and egg quality of aged laying hens with decreasing productivity is a forced molting. However, the changes in intestinal microbiota after forced molting of aged hens are not clearly known. The aim of the present study was to analyze the changes in excreta bacterial communities after forced molting of aged laying hens. METHODS:A total of one hundred 66-wk-old Hy-Line Brown laying hens were induced to molt by a 2-d water removal and an 11-d fasting until egg production completely ceased. The excreta samples of 16 hens with similar body weight were collected before and immediately after molting. Excreta bacterial communities were analyzed by high-throughput sequencing of bacterial 16S rRNA genes. RESULTS:Bacteroidetes, Firmicutes, and Proteobacteria were the three major bacterial phyla in pre-molting and immediate post-molting hens, accounting for more than 98.0%. Lactobacillus genus had relatively high abundance in both group, but decreased by molting (62.3% in pre-molting and 24.9% in post-molting hens). Moreover, pathogenic bacteria such as Enterococcus cecorum and Escherichia coli were more abundant in immediate post-molting hens than in pre-molting hens. Forced molting influenced the alpha diversity, with higher Chao1 (p = 0.012), phylogenetic diversity whole tree (p = 0.014), observed operational taxonomic unit indices (p = 0.006), and Simpson indices (p<0.001), which indicated that forced molting increased excreta bacterial richness of aged laying hens. CONCLUSION:This study improves the current knowledge of bacterial community alterations in the excreta by forced molting in aged laying hens, which can provide increasing opportunity to develop novel dietary and management skills for improving the gastrointestinal health of aged laying hens after molting.
Project description:The composition of the gastrointestinal microorganisms in poultry is closely associated with the host and its environment. In this study, using 16S rRNA and metagenomic techniques, we comprehensively analyzed the structure and diversity of the cecal microbiota of broiler chickens (BC) and laying hens (LH). The 16S rRNA sequencing analysis showed Firmicutes, Bacteroidetes, and Proteobacteria were the main cecal bacterial phyla in BC and LH. However, at the genus level, LH had a greater abundance of Bacteroides (P?<?0.05), Rikenellaceae_RC9_gut_group (P?<?0.01), Phascolarctobacterium (P?<?0.05), Desulfovibrio (P?<?0.05), Prevotellaceae_UCG-001 (P?<?0.05), and unclassified_o_Bacteroidales (P?<?0.05), whereas BC had a greater abundance of Alistipes (P?<?0.05), Rikenella (P?<?0.05), Ruminococcaceae_UCG-005 (P?<?0.05), Lachnoclostridium (P?<?0.05), and unclassified_f_Ruminococcaceae (P?<?0.05). It is particularly noteworthy that the genus Desulfovibrio was significantly more abundant in the LH cecum than in the BC cecum (P?<?0.05). A metagenomic analysis showed that the annotations in the LH dataset were significantly more abundant than in the BC dataset, and included replication, recombination and repair, energy production and transformation, cell wall/membrane/envelope biogenesis, and amino acid transport and metabolism-related functions (P?<?0.05). This study indicates that microbial genotypic differences in chickens of the same species can cause changes in the abundances of the gut microbiota, but do not alter the structural composition or major functional characteristics of the gut microbiota.
Project description:Gut inflammation caused by various factors including microbial infection leads to disorder of absorption of dietary nutrients and decrease in egg production in laying hens. We hypothesized that intestinal inflammation may affect egg production in laying hens through its impact on liver function. Dextran sodium sulphate (DSS) is known to induce intestinal inflammation in mammals, but whether it also induces inflammation in laying hens is not known. The goal of this study was to assess whether oral administration of DSS is a useful model of intestinal inflammation in laying hens and to characterize the effects of intestinal inflammation on egg production using this model. White Leghorn hens (350-day old) were administrated with or without 0.9 g of DSS/kg BW in drinking water for 5 D (n = 8, each). All laid eggs were collected, and their whole and eggshell weights were recorded. Blood was collected every day and used for biochemical analysis. Liver and intestinal tissues (duodenum, jejunum, ileum, cecum, cecal-tonsil, and colon) were collected 1 D after the final treatment. These tissue samples were used for histological analysis and PCR analysis. Oral administration of DSS in laying hens caused 1) histological disintegration of the cecal mucosal epithelium and increased monocyte/macrophage infiltration and IL-1?, IL-6, CXCLi2, IL-10, and TGF?-4 gene expression; 2) decreased egg production; 3) increased leukocyte infiltration and IL-1?, CXCLi2, and IL-10 expression in association with a high frequency of lipopolysaccharide-positive cells in the liver; and 4) decreased expression of genes related to lipid synthesis, lipoprotein uptake, and yolk precursor production. These results suggested that oral administration of DSS is a useful method for inducing intestinal inflammation in laying hens, and intestinal inflammation may reduce egg production by disrupting egg yolk precursor production in association with liver inflammation.
Project description:Water-soluble dietary fiber is known to modulate fecal microbiota. Although there are a few reports investigating the effects of fiber intake timing on metabolism, there are none on the effect of intake timing on microbiota. Therefore, in this study, we examined the timing effects of inulin-containing food on fecal microbiota. Mice were housed under conditions with a two-meals-per-day schedule, with a long fasting period in the morning and a short fasting period in the evening. Then, 10-14 days after inulin intake, cecal content and feces were collected, and cecal pH and short-chain fatty acids (SCFAs) were measured. The microbiome was determined using 16S rDNA sequencing. Inulin feeding in the morning rather than the evening decreased the cecal pH, increased SCFAs, and changed the microbiome composition. These data suggest that inulin is more easily digested by fecal microbiota during the active period than the inactive period. Furthermore, to confirm the effect of fasting length, mice were housed under a one-meal-per-day schedule. When the duration of fasting was equal, the difference between morning and evening nearly disappeared. Thus, our study demonstrates that consuming inulin at breakfast, which is generally after a longer fasting period, has a greater effect on the microbiota.
Project description:Due to animal welfare issues, European Union has banned the use of conventional cages (CC) and non-EU countries including the US are also under constant public pressure to restrict their use in egg production. Very limited information is available on the composition of the microbial community of hens raised in different housing environments. This study was conducted to determine the effects of CC and enriched colony cages (EC) on cecal microbiota of two commercial laying hen strains, Hy-Line W36 (W36) and Hy-Line Brown (HB) during the late production stage (53, 58, 67, and 72 weeks of age). Cecal microbiota was studied by analyzing 16S rRNA gene sequences with Quantitative Insights Into Microbial Ecology (QIIME) 2 ver. 2018.8. Differentially abundant taxa were identified by Linear discriminant analysis Effect Size (LEfSe) analysis (P < 0.05, LDA score > 2.0). At phylum level, Actinobacteria was significantly enriched in W36 at all time points while Synergistetes (53 weeks), Spirochaetes (58 weeks), and Synergistetes and Spirochaetes (67 weeks) were significantly higher in HB. At genus level, Bifidobacterium (at all time points) and butyric acid producing genera such as Butyricicoccus and Subdoligranulum (58 and 72 weeks) were significantly higher in W36 as compared to HB. Moreover, Proteobacteria (72 weeks) and its associated genus Campylobacter (67 and 72 weeks) were significantly enriched in EC as compared to CC. Alpha diversity was significantly higher in HB (at all time points) and in EC (67 weeks) as compared to W36 and CC, respectively. Similarly, there was a significant difference in community structure (beta diversity) between W36 and HB (all time points) as well as between EC and CC (67 weeks). The effect of housing and strains was not only seen at the bacterial composition and structure but also reflected at their functional level. Notably, KEGG metabolic pathways predicted to be involved in carbohydrates degradation and amino acids biosynthesis by PICRUSt analysis were significantly different between W36 and HB housed at CC and EC. In sum, cecal microbiota composition, diversities, and their functional pathways were affected by housing type which further varied between two commercial laying hen strains, HB and W36. This suggests that both housing and genetic strains of laying hens should be considered for selection of the alternative housing systems such as enriched colony cage.