Project description:Groundnut (Arachis hypogaea L.) is an important oil seed crop having major biotic constraint in production due to stem rot disease caused by fungus, Athelia rolfsii causing 25-80% loss in productivity. As chemical and biological combating strategies of this fungus are not very effective, thus genome sequencing can reveal virulence and pathogenicity related genes for better understanding of the host-parasite interaction. We report draft assembly of Athelia rolfsii genome of ~73?Mb having 8919 contigs. Annotation analysis revealed 16830 genes which are involved in fungicide resistance, virulence and pathogenicity along with putative effector and lethal genes. Secretome analysis revealed CAZY genes representing 1085 enzymatic genes, glycoside hydrolases, carbohydrate esterases, carbohydrate-binding modules, auxillary activities, glycosyl transferases and polysaccharide lyases. Repeat analysis revealed 11171 SSRs, LTR, GYPSY and COPIA elements. Comparative analysis with other existing ascomycotina genome predicted conserved domain family of WD40, CYP450, Pkinase and ABC transporter revealing insight of evolution of pathogenicity and virulence. This study would help in understanding pathogenicity and virulence at molecular level and development of new combating strategies. Such approach is imperative in endeavour of genome based solution in stem rot disease management leading to better productivity of groundnut crop in tropical region of world.
Project description:Thirty-four endophytic fungal isolates were obtained from the leaves of the medicinal plant Polyscias fruticosa, and their antagonistic activities against the growth of the common tomatoes plant pathogenic fungus Athelia rolfsii were initially screened using a dual culture assay. The endophytic fungus MFLUCC 17-0313, which was later molecularly identified as Diatrype palmicola, displayed the highest inhibition percentage (49.98%) in comparison to the others. This fungus was then chosen for further evaluation. Its culture broth and mycelia from a 10 L scale were separated and extracted using ethyl acetate, methanol, and hexane. Each extract was tested for antifungal activity against the same pathogen using a disc diffusion assay. Only the crude hexane extract of fungal mycelium showed antifungal activity. The hexane extract was fractioned using sephadex gel filtration chromatography and each fraction was tested for antifungal activity until the one with the highest inhibition percentage was obtained. The bioactive compound was identified as 8-methoxynaphthalen-1-ol using nuclear magnetic resonance spectroscopy and mass spectrometry. The minimum inhibition concentration of 8-methoxynaphthalen-1-ol was demonstrated at 250 µg/mL against the selected pathogen. Using the leaf assay, the solution of 8-methoxynapthalen-1-ol was tested for phytotoxic activity against A. rolfsii and was found to have no phytotoxic effects. These results showed that 8-methoxynaphthalen-1-ol has the potential for controlling the growth of A. rolfsii, the cause of Southern blight disease on tomatoes. This study may provide the foundation for future use of this compound as a biofungicide.
Project description:Physalis minima is an herbaceous plant and inhabitant of the porous and organic matter containing soil of bunds in crop fields, wastelands, around the houses, and on the roadsides. S. rolfsii is soil borne and it can infect over 500 plant species of different families. It is of interest to study the pathogenesis of S. rolfsii on P. minima. The S. rolfsii isolated from P. minima (physr1) was characterized by morphology and sequence of Internal Transcribed Spacer (ITS) region. The population structure determination and phylogenetic analysis showed the isolate physr1 significantly differs from other isolates. The null hypothesis of equal evolutionary rate was rejected throughout the Maximum likelihood (ML) tree topology of different S. rolfsii ITS sequences. The site-specific mean (relative) evolutionary rate analysis showed that most of the sites (80.59 % sites) evolved at a slower rate than average. Finally, the result of Tajima's neutrality test indicated that the population of S. rolfsii has recently begun to expand and that's why the pathogen was infecting the new host P. minima and pose a serious threat of infecting several other cropped and non-cropped hosts.