Project description:Enterococcus faecalis is a nonmotile Gram-positive coccus, found both as a commensal organism in healthy humans and animals and as a causative agent of multiple diseases, in particular endocarditis. We sequenced the genome of E. faecalis ATCC 29212, a commonly used reference strain in laboratory studies, to complete "finished" annotated assembly (3 Mb).
Project description:Bacteria can survive antibiotic treatment both by acquiring antibiotic resistance genes and through mechanisms of tolerance that are based on phenotypic changes and the formation of metabolically inactive cells. Here, we report an <i>Enterococcus faecalis</i> strain (<i>E. faecalis</i> UM001B) that was isolated from a cystic fibrosis patient and had no increase in resistance but extremely high-level tolerance to ampicillin, vancomycin, and tetracycline. Specifically, the percentages of cells that survived 3.5-h antibiotic treatment (at 100 μg · ml<sup>-1</sup>) were 25.4% ± 4.3% and 51.9% ± 4.0% for ampicillin and tetracycline, respectively; vancomycin did not exhibit any significant killing. Consistent with the changes in antibiotic susceptibility, UM001B was found to have reduced penetration of ampicillin and vancomycin and accumulation of tetracycline compared to the reference strain ATCC 29212. Based on whole-genome sequencing, four amino acid substitutions were identified in one of the tetracycline efflux pump repressors (TetRs), compared to ATCC 29212. Results of molecular simulations and experimental assays revealed that these mutations could lead to higher levels of tetracycline efflux activity. Consistently, replicating these mutations in <i>Escherichia coli</i> MG1655 increased its tolerance to tetracycline. Overall, these findings provide new insights into the development of multidrug tolerance in <i>E. faecalis</i>, which can facilitate future studies to better control enterococcal infections.<b>IMPORTANCE</b> <i>Enterococcus faecalis</i> represents a major group of pathogens causing nosocomial infections that are resistant to multiple classes of antibiotics. An important challenge associated with <i>E. faecalis</i> infection is the emergence of multidrug-tolerant strains, which have normal MICs but do not respond to antibiotic treatment. Here, we report a strain of <i>E. faecalis</i> that was isolated from a cystic fibrosis patient and demonstrated high-level tolerance to ampicillin, vancomycin, and tetracycline. Whole-genome sequencing revealed critical substitutions in one of the tetracycline efflux pump repressors that are consistent with the increased tolerance of <i>E. faecalis</i> UM001B to tetracycline. These findings provide new information about bacterial antibiotic tolerance and may help develop more effective therapeutics.
Project description:Gene content in various Enterococcus faecalis strains compared to E. faecalis V583. Strains have been compared to the V583 strain by comparative genomic hybridization using genome-wide PCR-based microarrays representing the V583 genome. Genes have been deemed "present" or "divergent" in the various strains.
Project description:A fish-pathogenic bacterium, Enterococcus faecalis strain BFFF11, was isolated from a tilapia suffering from streptococcosis in a fish farm in the Gazipur district of Bangladesh. The whole genome of this strain, BFFF11, was 3,067,042?bp, with a GC content of 37.4%.
Project description:Enterococcus faecalis strain SGAir0397 was isolated from a tropical air sample collected in Singapore. Its genome was assembled using single-molecule real-time sequencing data and comprises one circular chromosome with a length of 2.69 Mbp. The genome contains 2,595 protein-coding genes, 59 tRNAs, and 12 rRNAs.
Project description:To further investigate the homeostatic response of E. faecalis to Fe exposure, we examine the whole-genome transcriptional response of wild-type (WT) exposed to non toxic Fe excess. This experiment correspond the work titled Transcriptomic response of Enterococcus faecalis to iron excess (work in preparation) A four chip study using total RNA recovered from four separate wild-type cultures of Enterococcus faecalis OG1RF, two controls samples (N medium growth) and two iron samples (N medium gowth with 0.5 mM Fe-NTA). Each chip measures the expression level of 3,114 genome genes from Enterococcus faecalis strain V583 (A7980-00-01).
Project description:Halitzia is a traditional white-brined cheese produced by a limited number of producers in Cyprus. During a survey of the microbiome of a number of different Halitzia samples, we identified a bacterial strain that exhibited enhanced proteolytic activity compared to the other isolates. The strain was further studied, and it was assigned as <i>Enterococcus faecalis</i> PK23. We proceeded with sequencing of its whole genome using Illumina technology. Initial sequencing and assembly produced 116 scaffolds with a length of 3,149,036 bp. Comparison with the available <i>E. faecalis</i> genomes revealed that the strain PK23 exhibited high levels of identity to the genome sequence of <i>E. faecalis</i> isolate 26975_2#180 deposited in GenBank as a single complete contig. From the 116 scaffolds 106 could be aligned to the genome of isolate 26975_2#180 leading to a chromosomal length of 3,132,784 bp with a GC content of 37.3%. From the remaining 10 scaffolds, five showed similarity to plasmid sequences. More specifically, scaffold 54 showed high identity with most part of plasmid pEF1071 of <i>E. faecalis</i> strain BFE 1071, which carries the gene cluster involved in the biosynthesis of enterocins 1071A and 1071B, while scaffold 77 showed high identity with the entire sequence of the unnamed_5 cryptic plasmid of <i>Enterococcus faecium</i> strain PR05720-3. The other three scaffolds were only short parts of larger plasmids. The remaining five scaffolds which could not be related to any plasmid sequence most probably constitute chromosomal sequences present in strain PK23 but absent from isolate 26975_2#180. Their total length was around 2.7 kb, which does not affect the sequence of the PK23 pseudochromosome in a major way. The whole-genome sequence annotation of strain PK23 identified 3161 coding sequences and 62 RNA sequences. The results from the Rapid Annotation using Subsystem Technology (RAST) version 2.0 server indicated the presence of seven putative genes which were related to the subsystem of Protein Degradation. This dataset provides a first overview of the proteolytic and bacteriocin producing properties of <i>E. faecalis</i> PK23. The dataset may also be used in future experiments which could shed light on the adaptation of the strain in the dairy environment and its role in cheese production.
Project description:Here, we introduce the 2.8-Mbp draft genome of Enterococcus faecalis strain UMB0843, isolated from the female urinary tract. E. faecalis is a leading cause of nosocomial infections, and many strains are often resistant to multiple antibiotics. We focus our genome analysis on the multiple genes involved in antibiotic resistance in this strain.
Project description:Enterococcus faecalis is commonly isolated from the gastrointestinal tract of healthy infants and adults, where it contributes to host health and well-being. We describe here the draft genome sequence of E. faecalis PC1.1, a candidate probiotic strain isolated from human feces.
Project description:Enterococcus faecalis OB15 is a probiotic strain that was isolated from rigouta, a popular traditional Tunisian fermented cheese. We report here the draft genome sequence of this strain, consisting of 2,912,159?bp, with an average G+C content of 37.49%.