Project description:RNA-directed DNA methylation (RdDM) in plants is a well-characterized example of RNA interference-related transcriptional gene silencing. To determine the relationships between RdDM and heterochromatin in the repeat-rich maize (Zea mays) genome, we performed whole-genome analyses of several heterochromatic features: dimethylation of lysine 9 and lysine 27 (H3K9me2 and H3K27me2), chromatin accessibility, DNA methylation, and small RNAs; we also analyzed two mutants that affect these processes, mediator of paramutation1 and zea methyltransferase2.
Project description:We report the application of whole transcriptome sequencing technology for high-throughput profiling of coding and non-coding RNAs associated with Spodoptera frugiperda feeding in Zea mays. 4,366 mRNAs and 233 lncRNAs were differentially expressed during Spodoptera frugiperda feeding in Zea mays. Our data contribute to the understanding of the function of coding and non-coding RNAs in the regulation of plant-insect interactions.
Project description:Papain-like cysteine proteases (PLCPs) play important roles in plant defense mechanisms. Previous work identified a set of five apoplastic PLCPs (CP1A, CP1B, CP2, XCP2 and CatB) which are crucial for the orchestration of SA-dependent defense signaling and vice versa in maize (Zea mays). One central question from these findings is which mechanism is triggered by apoplastic PLCPs to induce SA-dependent defenses. By a mass spectrometry approach we discovered a novel peptide (Zip1 = Zea mays immune signaling peptide) to be enriched in apoplastic fluid upon SA treatment. Zip1 induces PR-gene expression when applied to naїve maize leaves. Moreover, it activates apoplastic PLCPs similar as SA does, suggesting Zip1 to play an important role in SA-mediated defense signaling. In vitro studies using recombinant protein showed that CP1A and CP2, but not XCP2 and CatB, release Zip1 from its pro-peptide (PROZIP1) in vitro. Strikingly, metabolite analysis showed direct induction of SA de novo synthesis by Zip1 in maize leaves. In line with this, RNA sequencing revealed that Zip1-mediated changes in maize gene expression largely resemble SA-induced responses. Consequently, Zip1 increases maize susceptibility to the necrotrophic fungal pathogen Botrytis cinerea. In summary, this study identifies the PLCP-released peptide signal Zip1, which triggers SA signaling in maize.
Project description:The differentiation of specialized feeding sites in Zea mays root cells in response to nematode infestation involves substantial cellular reprogramming of host cells that is not well characterized at the molecular level. Expression data was generated from Zea mays root cells undergoing giant cell formation due to nematode infestation and from non-infested control root cells. Cells were laser captured 14 and 21 days after infestation.
Project description:Maize (Zea mays L.) was hydroponically grown for 14 days and then stressed with hypoxia. Maize roots were sampled after 24 hours and analyzed by mass spectrometry.
Project description:Maize (Zea mays) is an excellent cereal model for research on seed development because of its relatively large size for both embryo and endosperm. Despite the importance of seed in agriculture, the genome-wide transcriptome pattern throughout seed development has not been well characterized. Using high-throughput RNA sequencing, we developed a spatiotemporal transcriptome atlas of B73 maize seed development based on 53 samples from fertilization to maturity for embryo, endosperm, and whole seed tissues.
Project description:In this study RNA-sequencing was used to monitor gene expression changes in four tissues (meristematic zone, elongation zone, and cortex and stele of the mature zone) of maize (Zea mays L.) primary roots in response to water deficit to gain a better understanding of the mechanisms underlying drought tolerance.