Project description:A major gap in understanding infectious diseases is the lack of information about molecular interaction networks between pathogens and the human host. Haemophilus ducreyi causes the genital ulcer disease chancroid in adults and is a leading cause of cutaneous ulcers in children in the tropics. We developed a model in which human volunteers are infected on the upper arm with H. ducreyi until they develop pustules. To define the H. ducreyi and human interactome, we determined bacterial and host transcriptomic and host metabolomic changes in pustules. We found that in vivo H. ducreyi transcripts were distinct from those in the inocula, as were host transcripts in pustule and wounded control sites. Many of the upregulated H. ducreyi genes were found to be involved in ascorbic acid and anaerobic metabolism and inorganic ion/nutrient transport. The top 20 significantly expressed human pathways showed that all were involved in immune responses. We generated a bipartite network for interactions between host and bacterial gene transcription; multiple positively correlated networks contained H. ducreyi genes involved in anaerobic metabolism and host genes involved with the immune response. Metabolomic studies showed that pustule and wounded samples had different metabolite compositions; the top ion pathway involved ascorbate and aldarate metabolism, which correlated with the H. ducreyi transcriptional response and upregulation of host genes involved in ascorbic acid recycling. These data show that an interactome exists between H. ducreyi and the human host and suggest that H. ducreyi exploits the metabolic niche created by the host immune response.IMPORTANCE Dual RNA sequencing (RNA-seq) offers the promise of determining an interactome at a transcriptional level between a bacterium and the host but has yet to be done on any bacterial infection in human tissue. We performed dual RNA-seq and metabolomics analyses on wounded and infected sites following experimental infection of the arm with H. ducreyi Our results suggest that H. ducreyi survives in an abscess by utilizing l-ascorbate as an alternative carbon source, possibly taking advantage of host ascorbic acid recycling, and that H. ducreyi also adapts by upregulating genes involved in anaerobic metabolism and inorganic ion and nutrient transport. To our knowledge, this is the first description of an interaction network between a bacterium and the human host at a site of infection.
Project description:UNLABELLED:The influence of the skin microbiota on host susceptibility to infectious agents is largely unexplored. The skin harbors diverse bacterial species that may promote or antagonize the growth of an invading pathogen. We developed a human infection model for Haemophilus ducreyi in which human volunteers are inoculated on the upper arm. After inoculation, papules form and either spontaneously resolve or progress to pustules. To examine the role of the skin microbiota in the outcome of H. ducreyi infection, we analyzed the microbiomes of four dose-matched pairs of "resolvers" and "pustule formers" whose inoculation sites were swabbed at multiple time points. Bacteria present on the skin were identified by amplification and pyrosequencing of 16S rRNA genes. Nonmetric multidimensional scaling (NMDS) using Bray-Curtis dissimilarity between the preinfection microbiomes of infected sites showed that sites from the same volunteer clustered together and that pustule formers segregated from resolvers (P = 0.001, permutational multivariate analysis of variance [PERMANOVA]), suggesting that the preinfection microbiomes were associated with outcome. NMDS using Bray-Curtis dissimilarity of the endpoint samples showed that the pustule sites clustered together and were significantly different than the resolved sites (P = 0.001, PERMANOVA), suggesting that the microbiomes at the endpoint differed between the two groups. In addition to H. ducreyi, pustule-forming sites had a greater abundance of Proteobacteria, Bacteroidetes, Micrococcus, Corynebacterium, Paracoccus, and Staphylococcus species, whereas resolved sites had higher levels of Actinobacteria and Propionibacterium species. These results suggest that at baseline, resolvers and pustule formers have distinct skin bacterial communities which change in response to infection and the resultant immune response. IMPORTANCE:Human skin is home to a diverse community of microorganisms, collectively known as the skin microbiome. Some resident bacteria are thought to protect the skin from infection by outcompeting pathogens for resources or by priming the immune system's response to invaders. However, the influence of the skin microbiome on the susceptibility to or protection from infection has not been prospectively evaluated in humans. We characterized the skin microbiome before, during, and after experimental inoculation of the arm with Haemophilus ducreyi in matched volunteers who subsequently resolved the infection or formed abscesses. Our results suggest that the preinfection microbiomes of pustule formers and resolvers have distinct community structures which change in response to the progression of H. ducreyi infection to abscess formation.
Project description:The complex molecular events that occur within the host during the establishment of a Mycobacterium tuberculosis infection are poorly defined, thus preventing identification of predictive markers of disease progression and state. To identify such molecular markers during M. tuberculosis infection, global changes in transcriptional response in the host were assessed using mouse whole genome arrays. Bacterial load in the lungs, the lesions associated with infection, and gene expression profiling was performed by comparing normal lung tissue to lungs from mice collected at 20, 40, and 100 days after aerosol infection with the H37Rv strain of M. tuberculosis. Quantitative, whole lung gene expression identified signature profiles defining different signaling pathways and immunological responses characteristic of disease progression. This includes genes representing members of the interferon-associated gene families, chemokines and cytokines, MHC, and NOS2, as well as an array of cell surface markers associated with the activation of T cells, macrophages, and dendritic cells that participate in immunity to M. tuberculosis infection. More importantly, several gene transcripts encoding proteins that were not previously associated with the host response to M. tuberculosis infection, and unique molecular markers associated with disease progression and state, were identified.
Project description:BACKGROUND: Staphylococcus aureus is a major pathogen of humans and animals and emerging antibiotic-resistant strains have further increased the concern of this health issue. Host genetics influence susceptibility to S. aureus infections, and the genes determining the outcome of infections should be identified to find alternative therapies to treatment with antibiotics. Here, we used outbred animals from a divergent selection based on susceptibility towards Staphylococcus infection to explore host immunogenetics. METHODOLOGY/PRINCIPAL FINDINGS: We investigated how dendritic cells respond to heat-inactivated S. aureus and whether dendritic cells from animals showing different degrees of susceptibility had distinct gene expression profiles. We measured gene expression levels of in vitro S. aureus-stimulated bone marrow-derived dendritic cells at three different time points (0, 3 and 8 hrs) by using 15 k ovine Agilent microarrays. Furthermore, differential expression of a selected number of genes was confirmed by RT-qPCR. Gene signatures of stimulated DCs were obtained and showed that genes involved in the inflammatory process and T helper cell polarization were highly up-regulated upon stimulation. Moreover, a set of 204 genes were statistically differentially expressed between susceptible and resistant animals, and grouped them according to their predisposition to staphylococcal infection. Interestingly, over-expression of the C1q and Ido1 genes was observed in the resistant line and suggested a role of classical pathway of complement and early regulation of inflammation pathways, respectively. On the contrary, over expression of genes involved in the IL1R pathway was observed in susceptible animals. Furthermore, the leucocyte extravasation pathway was also found to be dominant in the susceptible line. CONCLUSION/SIGNIFICANCE: We successfully obtained Staphylococcus aureus associated gene expression of ovine BM-DC in an 8-hour kinetics experiment. The distinct transcriptional profiles of dendritic cells obtained from resistant and susceptible animals may explain susceptibility towards S. aureus infections in a broader context.
Project description:Simian immunodeficiency virus (SIV) infection leads to AIDS in experimentally infected macaques, whereas natural reservoir hosts exhibit limited disease and pathology. It is, however, unclear how natural hosts can sustain high viral loads, comparable to those observed in the pathogenic model, without developing severe disease. We performed transcriptional profiling on lymph node, blood, and colon samples from African green monkeys (natural host model) and Asian pigtailed macaques (pathogenic model) to directly compare gene expression patterns during acute pathogenic versus non-pathogenic SIV infection. The majority of gene expression changes that were unique to either model were detected in the lymph nodes at the time of peak viral load. Results suggest a shift toward cellular stress pathways and Th1 profiles during pathogenic infection, with strong and sustained type I and II interferon responses. In contrast, a strong type I interferon response was initially induced during non-pathogenic infection but resolved after peak viral load. The natural host also exhibited controlled Th1 profiles and better preservation of overall cell homeostasis. This study identified gene expression patterns that are specific to disease susceptibility, tissue compartmentalization, and infection duration. These patterns provide a unique view of how host responses differ depending upon lentiviral infection outcome.
Project description:A major gap in understanding infectious diseases is the lack of information about molecular interaction networks between pathogens and the human host. Haemophilus ducreyi causes the genital ulcer disease chancroid in adults and is a leading cause of cutaneous ulcers in children in the tropics. We developed a model in which human volunteers are infected on the upper arm with H. ducreyi until they develop pustules. To define the H. ducreyi and human interactome, we determined bacterial and host transcriptomic and host metabolomic changes in pustules. We found in vivo H. ducreyi transcripts were distinct from those in the inocula as were host transcripts in pustule and wounded control sites. Many of the upregulated H. ducreyi genes were involved in ascorbic acid and anaerobic metabolism and inorganic ion/nutrient transport. The top 20 significantly expressed human pathways showed that all were involved in immune responses. We generated a bipartite network for interactions between host and bacterial gene transcription; multiple positively correlated networks contained H. ducreyi genes involved in anaerobic metabolism and host genes involved with the immune response. Metabolomic studies showed that pustule and wounded samples had different metabolite compositions; the top ion pathway involved ascorbate and aldarate metabolism, which correlated with the H. ducreyi transcriptional response and upregulation of host genes involved in ascorbic acid recycling. These data show that an interactome exists between H. ducreyi and the human host and suggests that H. ducreyi exploits the metabolic niche created by the host immune response. Overall design: mRNA profiles from four human pustules infected with H. ducreyi from four different volunteers, their four corresponding wound controls, and their four H. ducreyi inocula samples grown to mid-log phase.
Project description:Post influenza bacterial pneumonia is associated with significant mortality and morbidity. Dendritic cells (DCs) play a crucial role in host defense against bacterial pneumonia, but their contribution to post influenza-susceptibility to secondary bacterial pneumonia is incompletely understood. WT and CCR2-/- mice were infected with 100 plaque forming units (pfu) H1N1 intranasally alone or were challenged on day 5 with 7?×?107 colony forming units (cfu) methicillin-resistant Staphylococcus aureus intratracheally. WT mice express abundant CCL2 mRNA and protein post-H1N1 alone or dual infection. CCR2-/- mice had significantly higher survival as compared to WT mice, associated with significantly improved bacterial clearance at 24 and 48?h (10-fold and 14-fold, respectively) post bacterial challenge. There was robust upregulation of IL-23 and IL-17 as well as downregulation of IL-27 expression in CCR2-/- mice following sequential infection as compared to WT mice, which was also associated with significantly greater accumulation of CD103+ DC. Finally, WT mice treated with a CCR2 inhibitor showed improved bacterial clearance in association with similar cytokine profiles as CCR2-/- mice. Thus, CCR2 significantly contributes to increased susceptibility to bacterial infection after influenza pneumonia likely via altered dendritic cell responses and thus, CCR2 antagonism represents a potential therapeutic strategy.
Project description:Haemophilus ducreyi is a hemin-requiring bacterium causing the genital ulcer disease chancroid. Previously we demonstrated that the heat shock protein GroEL was immunogenic and possibly highly expressed in a mammalian host. The present study was initiated to (i) determine the relative amounts of GroEL expressed by H. ducreyi during in vitro exposure to stresses and (ii) evaluate whether a high level of GroEL is directly or indirectly required for survival and adherence of stressed H. ducreyi. Using scanning densitometry of sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profiles, we found that H. ducreyi expressed high basal levels of GroEL, averaging fivefold greater than in Escherichia coli. These high GroEL levels increased up to twofold upon exposure of the organism to heat shock or high levels of hydrogen peroxide and during adherence to two human genital cell lines. Furthermore, when the gene for DnaK was present on a multicopy plasmid in H. ducreyi, a 1.8-fold increase in DnaK and a 2.3-fold reduction in GroEL were seen. These results suggest that DnaK serves as a negative modulator of H. ducreyi GroEL. Subsequently we found that H. ducreyi with lower GroEL had diminished ability to survive when challenged by heat and oxidative stresses. In addition, the long, parallel chains characteristic of virulent strains of H. ducreyi were absent when GroEL was lowered, so that fewer bacterial cells adhered to the human cells. These results suggest that the unusually high basal levels of GroEL are involved, either directly or indirectly, in the survival, chaining, and adherence of H. ducreyi in the presence of the combined stresses of the host environment.
Project description:Haemophilus ducreyi is a Gram-negative bacterium that causes chancroid, a sexually transmitted genital ulcer disease. Different lipooligosaccharide (LOS) structures have been identified from H. ducreyi strain 35000, including those sialylated glycoforms. Surface LOS of H. ducreyi is considered an important virulence factor that is involved in ulcer formation, cell adhesion, and invasion of host tissue. Gene Hd0686 of H. ducreyi, designated lst (for lipooligosaccharide sialyltransferase), was identified to encode an alpha2,3-sialyltransferase that is important for the formation of sialylated LOS. Here, we show that Hd0053 of H. ducreyi genomic strain 35000HP, the third member of the glycosyltransferase family 80 (GT80), also encodes an alpha2,3-sialyltransferase that may be important for LOS sialylation.
Project description:Background: Staphylococcus aureus is a major pathogen of humans and animals and rapidly emerging antibiotic-resistant strains have further increased the severity of this health issue. Host genetics influence susceptibility to S. aureus infections, and genes determining infection outcome should be identified to analyze immune-based therapies as an alternative to antibiotics. Here, we used outbred animals from a divergent selection on susceptibility towards Staphylococcus infection to explore host immunogenetics. Methodology/Principal Findings: We investigated how dendritic cells respond to heat-inactivated S. aureus and whether dendritic cells from animals with different degree of susceptibility have distinct gene expression profiles. We measured expression levels of 15K probes from in vitro S. aureus-stimulated bone marrow-derived dendritic cells at three different time points (0, 3 and 8 hours) by using Agilent microarrays. Furthermore, a selected number of genes were confirmed by RT-qPCR. Gene signatures of stimulated DCs were obtained and genes involved in inflammatory process and T helper cell polarization were highly up regulated upon stimulation. Moreover, a set of 204 genes were statistically different between susceptible and resistant animals, and grouped them according to their predisposition to staphylococcal infection. Interestingly, a role of classical pathway of Complement and early regulation of inflammation is observed in the resistant line through over expression of C1q and Ido1 genes respectively. On the opposite, over expression of genes in the IL1R pathway in the susceptible animals was noticed. Furthermore, leucocyte extravasation pathway was also found dominant in the susceptible line. Conclusion/Significance: we successfully obtained Staphylococcus aureus associated gene expression of ovine BM-DC in 8 hour kinetics experiment. Distinct transcriptional profiles of dendritic cells obtained from resistant and susceptible lines may explain susceptibility towards S. aureus infections in a broad context. Keywords: Staphylococcus aureus, dendritic cells, mammalian, transcriptome, immunity, mastitis Overall design: 44 sample records; two-colour dye-swap experimental design