Project description:The proapoptotic Bcl-2 protein Bax by itself is sufficient to initiate apoptosis in almost all apoptotic paradigms. Thus, compounds that can facilitate disruptive Bax insertion into mitochondrial membranes have potential as cancer therapeutics. In our study, we have identified small-molecule compounds predicted to associate with the Bax hydrophobic groove by a virtual-screen approach. Among these, one lead compound (compound 106) promotes Bax-dependent but not Bak-dependent apoptosis. Importantly, this compound alters Bax protein stability in vitro and promotes the insertion of Bax into mitochondria, leading to Bax-dependent permeabilization of the mitochondrial outer membrane. Furthermore, as a single agent, compound 106 inhibits the growth of transplanted tumors, probably by inducing apoptosis in tumors. Our study has revealed a compound that activates Bax and induces Bax-dependent apoptosis, which may lead to the development of new therapeutic agents for cancer.
Project description:Ovarian cancer is a leading killer of women, and no cure for advanced ovarian cancer is available. Alisertib (ALS), a selective Aurora kinase A (AURKA) inhibitor, has shown potent anticancer effects, and is under clinical investigation for the treatment of advanced solid tumor and hematologic malignancies. However, the role of ALS in the treatment of ovarian cancer remains unclear. This study investigated the effects of ALS on cell growth, apoptosis, autophagy, and epithelial to mesenchymal transition (EMT), and the underlying mechanisms in human epithelial ovarian cancer SKOV3 and OVCAR4 cells. Our docking study showed that ALS, MLN8054, and VX-680 preferentially bound to AURKA over AURKB via hydrogen bond formation, charge interaction, and π-π stacking. ALS had potent growth-inhibitory, proapoptotic, proautophagic, and EMT-inhibitory effects on SKOV3 and OVCAR4 cells. ALS arrested SKOV3 and OVCAR4 cells in G2/M phase and induced mitochondria-mediated apoptosis and autophagy in both SKOV3 and OVCAR4 cell lines in a concentration-dependent manner. ALS suppressed phosphatidylinositol 3-kinase/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase pathways but activated 5'-AMP-dependent kinase, as indicated by their altered phosphorylation, contributing to the proautophagic activity of ALS. Modulation of autophagy altered basal and ALS-induced apoptosis in SKOV3 and OVCAR4 cells. Further, ALS suppressed the EMT-like phenotype in both cell lines by restoring the balance between E-cadherin and N-cadherin. ALS downregulated sirtuin 1 and pre-B cell colony enhancing factor (PBEF/visfatin) expression levels and inhibited phosphorylation of AURKA in both cell lines. These findings indicate that ALS blocks the cell cycle by G2/M phase arrest and promotes cellular apoptosis and autophagy, but inhibits EMT via phosphatidylinositol 3-kinase/Akt/mTOR-mediated and sirtuin 1-mediated pathways in human epithelial ovarian cancer cells. Further studies are warranted to validate the efficacy and safety of ALS in the treatment of ovarian cancer.
Project description:Methyl-CpG-binding protein 2 (MeCP2) facilitates the carcinogenesis and progression of several types of cancer. However, its role in breast cancer and the relevant molecular mechanism remain largely unclear. In this study, analysis of the Cancer Genome Atlas (TCGA) data that MeCP2 expression was significantly upregulated in breast cancer tissues, and high MeCP2 expression was correlated with poor overall survival. Knockdown of MeCP2 inhibited breast cancer cell proliferation and G1-S cell cycle transition and migration as well as induced cell apoptosis in vitro. Moreover, MeCP2 knockdown suppressed cancer cell growth in vivo. Investigation of the molecular mechanism showed that MeCP2 repressed RPL11 and RPL5 transcription by binding to their promoter regions. TCGA data revealed significantly lower RPL11 and RPL5 expression in breast cancer tissues; additionally, overexpression of RPL11/RPL5 significantly suppressed breast cancer cell proliferation and G1-S cell cycle transition and induced apoptosis in vitro. Furthermore, RPL11 and RPL5 suppressed ubiquitination-mediated P53 degradation through direct binding to MDM2. This study demonstrates that MeCP2 promotes breast cancer cell proliferation and inhibits apoptosis through suppressing RPL11 and RPL5 transcription by binding to their promoter regions.
Project description:Therapy resistance is a major limitation to the successful treatment of cancer. Here, we identify Bcl2-like 13 (Bcl2L13), an atypical member of the Bcl-2 family, as a therapy susceptibility gene with elevated expression in solid and blood cancers, including glioblastoma (GBM). We demonstrate that mitochondria-associated Bcl2L13 inhibits apoptosis induced by a wide spectrum of chemo- and targeted therapies upstream of Bcl2-associated X protein activation and mitochondrial outer membrane permeabilization in vitro and promotes GBM tumor growth in vivo. Mechanistically, Bcl2L13 binds to proapoptotic ceramide synthases 2 (CerS2) and 6 (CerS6) via a unique C-terminal 250-aa sequence located between its Bcl-2 homology and membrane anchor domains and blocks homo- and heteromeric CerS2/6 complex formation and activity. Correspondingly, CerS2/6 activity and Bcl2L13 abundance are inversely correlated in GBM tumors. Thus, our genetic and functional studies identify Bcl2L13 as a regulator of therapy susceptibility and point to the Bcl2L13-CerS axis as a promising target to enhance responses of therapy-refractory cancers toward conventional and targeted regimens currently in clinical use.
Project description:Pyruvate kinase M2 isoform (PKM2) catalyzes the last step of glycolysis and plays an important role in tumor cell proliferation. Recent studies have reported that PKM2 also regulates apoptosis. However, the mechanisms underlying such a role of PKM2 remain elusive. Here we show that PKM2 translocates to mitochondria under oxidative stress. In the mitochondria, PKM2 interacts with and phosphorylates Bcl2 at threonine (T) 69. This phosphorylation prevents the binding of Cul3-based E3 ligase to Bcl2 and subsequent degradation of Bcl2. A chaperone protein, HSP90?1, is required for this function of PKM2. HSP90?1's ATPase activity launches a conformational change of PKM2 and facilitates interaction between PKM2 and Bcl2. Replacement of wild-type Bcl2 with phosphorylation-deficient Bcl2 T69A mutant sensitizes glioma cells to oxidative stress-induced apoptosis and impairs brain tumor formation in an orthotopic xenograft model. Notably, a peptide that is composed of the amino acid residues from 389 to 405 of PKM2, through which PKM2 binds to Bcl2, disrupts PKM2-Bcl2 interaction, promotes Bcl2 degradation and impairs brain tumor growth. In addition, levels of Bcl2 T69 phosphorylation, conformation-altered PKM2 and Bcl2 protein correlate with one another in specimens of human glioblastoma patients. Moreover, levels of Bcl2 T69 phosphorylation and conformation-altered PKM2 correlate with both grades and prognosis of glioma malignancy. Our findings uncover a novel mechanism through which mitochondrial PKM2 phosphorylates Bcl2 and inhibits apoptosis directly, highlight the essential role of PKM2 in ROS adaptation of cancer cells, and implicate HSP90-PKM2-Bcl2 axis as a potential target for therapeutic intervention in glioblastoma.
Project description:The E3 ubiquitin ligase Parkin is a key effector of the removal of damaged mitochondria by mitophagy. Parkin determines cell fate in response to mitochondrial damage, with its loss promoting early onset Parkinson's disease and potentially also cancer progression. Controlling a cell's apoptotic response is essential to co-ordinate the removal of damaged mitochondria. We report that following mitochondrial damage-induced mitophagy, Parkin directly ubiquitinates the apoptotic effector protein BAK at a conserved lysine in its hydrophobic groove, a region that is crucial for BAK activation by BH3-only proteins and its homo-dimerisation during apoptosis. Ubiquitination inhibited BAK activity by impairing its activation and the formation of lethal BAK oligomers. Parkin also suppresses BAX-mediated apoptosis, but in the absence of BAX ubiquitination suggesting an indirect mechanism. In addition, we find that BAK-dependent mitochondrial outer membrane permeabilisation during apoptosis promotes PINK1-dependent Parkin activation. Hence, we propose that Parkin directly inhibits BAK to suppress errant apoptosis, thereby allowing the effective clearance of damaged mitochondria, but also promotes clearance of apoptotic mitochondria to limit their potential pro-inflammatory effect.
Project description:The E3 ubiquitin ligase Parkin is a key effector of the removal of damaged mitochondria by mitophagy. Parkin determines cell fate in response to mitochondrial damage, with its loss promoting early onset Parkinson's disease and potentially also cancer progression. Controlling a cell's apoptotic response is essential to co-ordinate the removal of damaged mitochondria. We report that following mitochondrial damage-induced mitophagy, Parkin directly ubiquitinates the apoptotic effector protein BAK at a conserved lysine in its hydrophobic groove, a region that is crucial for BAK activation by BH3-only proteins and its homo-dimerisation during apoptosis. Ubiquitination inhibited BAK activity by impairing its activation and the formation of lethal BAK oligomers. Parkin also suppresses BAX-mediated apoptosis, but in the absence of BAX ubiquitination suggesting an indirect mechanism. In addition, we find that BAK-dependent mitochondrial outer membrane permeabilisation during apoptosis promotes PINK1-dependent Parkin activation. Hence, we propose that Parkin directly inhibits BAK to suppress errant apoptosis thereby allowing the effective clearance of damaged mitochondria, but also promotes clearance of apoptotic mitochondria to limit their potential pro-inflammatory effect.
Project description:As the most malignant breast cancer subtype, triple-negative breast cancer (TNBC) does not have effective targeted therapies clinically to date. As a selective Sp1 inhibitor, Mithramycin A (MIT) has been reported to have anti-tumor activities in multiple cancers. However, the efficacy and the mechanism of MIT in breast cancer, especially TNBC, have not been studied. In this study, we demonstrated that MIT suppressed breast cancer cell survival in a dosage-dependent manner. Interestingly, TNBC cells were more sensitive to MIT than non-TNBC cells. MIT inhibited TNBC cell proliferation and promoted apoptosis in vitro in time- and dosage-dependent manners. MIT suppressed TNBC cell survival, at least partially, by transcriptionally down-regulating KLF5, an oncogenic transcription factor specifically expressed in basal TNBC. Finally, MIT suppressed TNBC cell growth in a xenograft mouse model. Taken together, our findings suggested that MIT inhibits basal TNBC via the Sp1/KLF5 axis and that MIT may be used for TNBC treatment.
Project description:The unique metabolic profile of most cancers (aerobic glycolysis) might confer apoptosis-resistance and be therapeutically targeted. Compared to normal cells, several human cancers have high mitochondrial membrane potential and low expression of the K+ channel Kv1.5, both contributing to apoptosis-resistance. Dichloroacetate (DCA), an inhibitor of the mitochondrial pyruvate dehydrogenase kinase (PDK), shifts metabolism from glycolysis to glucose oxidation, decreases mitochondrial membrane potential, increases mitochondrial-H2O2 and activates Kv channels in all cancer, but not normal cells; DCA upregulates Kv1.5 by an NFAT1-dependent mechanism. DCA induces apoptosis, decreases proliferation and tumor growth in vitro and in vivo, without apparent toxicity. Molecular inhibition of PDK2 by siRNA mimics DCA. The mitochondria-NFAT-Kv axis and PDK are important therapeutic targets in cancer; the orally available DCA is a novel selective anticancer agent. Experiment Overall Design: lung carcinoma and brain glioblastoma cells were analalyzed, with microarrays run both for control and treatment with DCA
Project description:Tumor-associated macrophages are increasingly viewed as a target of great relevance in the tumor microenvironment, because of their important role in cancer progression and metastasis. However, the endogenous regulatory mechanisms underlying tumor-associated macrophage differentiation remain largely unknown. Here, we report that caspase-1 promotes tumor-associated macrophage differentiation by cleaving peroxisome proliferator-activated receptor gamma (PPAR?) at Asp64, thus generating a 41?kDa fragment. This truncated PPAR? translocates to mitochondria, where it directly interacts with medium-chain acyl-CoA dehydrogenase (MCAD). This binding event attenuates MCAD activity and inhibits fatty acid oxidation, thereby leading to the accumulation of lipid droplets and promoting tumor-associated macrophage differentiation. Furthermore, the administration of caspase-1 inhibitors or the infusion of bone marrow-derived macrophages genetically engineered to overexpress murine MCAD markedly suppresses tumor growth. Therefore, targeting the caspase-1/PPAR?/MCAD pathway might be a promising therapeutic approach to prevent tumor progression.Tumor associated macrophages (TAMs) promote cancer progression. Here, the author show that caspase-1 promotes TAMs differentiation by attenuating medium-chain acyl-CoA dehydrogenase activity and that inhibition of this axis results in suppression of tumour growth in a transgenic mouse model of breast cancer.