Project description:Ozone is a strong oxidant and a key stress elicitor. The immediate and longer term impacts of ozone are poorly understood in species with emission of both de novo synthesized and stored volatiles, such a tobacco (Nicotiana tabacum), which has terpene-containing glandular trichomes on the leaf surface. In this study, we exposed N. tabacum 'Wisconsin' leaves to acute ozone doses of 0 (control), 400, 600, 800, and 1000 ppb for 30 min and studied the effects of ozone exposure on ozone uptake, gas-exchange characteristics, and emissions of lipoxygenase pathway volatiles, monoterpenes, and sesquiterpenes. Foliage emissions of lipoxygenase pathway volatiles were quantitatively related to the severity of ozone exposure, but the stress dose vs. emission relationship was weaker for terpenoids. Analysis of leaf terpene content and composition indicated that several monoterpenes and sesquiterpenes were not stored in leaves and were synthesized de novo upon ozone exposure. The highest degree of elicitation for each compound was observed immediately after ozone treatment and it declined considerably during recovery. Leaf ozone uptake was dominated by non-stomatal deposition, and the emissions of total lipoxygenase pathway volatiles and mono- and sesquiterpenes were positively correlated with non-stomatal ozone deposition. Overall, this study demonstrates remarkably high ozone resistance of the studied tobacco cultivar and indicates that ozone's effects on volatile emissions primarily reflect modifications in the release of stored volatiles and reaction of ozone with the leaf surface structure.
Project description:We analyzed the global defense responses in common tobacco against a begomovirus Tomato yellow leaf curl China virus, an invasive whitefly species Middle East-Asia Minor 1, and their co-infestation. The transcripts of defense related genes were both overlapping and divergent in response to virus and whitefly. Overall design: Four treatments were conducted, and they include mock inoculated plants, TYLCCNV infected plants, whitefly infested plants, and plants co-infested with TYLCCNV and whitefly. Plants at the 3-4 true-leaf stage were inoculated with TYLCCNV and its DNA-beta and cultivated to the 6-7 true-leaf stage at 22 days post-inoculation. For the whitefly feeding treatment, approximately 6,000 adult whiteflies that emerged from the tobacco plants were allowed to distribute randomly onto the leaves of six mock inoculated plants in one cage, and 6,000 adult whiteflies that emerged from the tobacco plants were released onto the leaves of six virus infected plants in another cage. After 72 h of feeding, all the adult whiteflies were discarded. Then the comparable leaves from the six plants in each of four treatments were harvested, flash-frozen in liquid N2 and stored at -80 °C.
Project description:To provide a detailed insight into the early biological process of tobacco mosaic disease, transcriptomic changes in tobacco leaves were surveyed at 1, 3 and 5 days after mono-infected by Tobacco mosaic virus (TMV) and co-infected by Cucumber mosaic virus (CMV) and TMV. At the three different stages, there were 2372, 3168 and 2045 differentially expressed genes (DEGs) in mono-infected leaves, and 2388, 3281 and 3417 DEGs were identified in co-infected leaves. There were 836, 1538 and 1185 common DEGs between the mono-infection and co-infection at the three time points, respectively. These common DEGs were enriched in the pathways, such as photosynthesis, biosynthesis of secondary metabolites, plant-pathogen interaction, porphyrin and chlorophyll metabolism, phenylalanine metabolism and phenylpropanoid biosynthesis. Photosynthesis pathway was observably down-regulated, and defense response pathways were markedly up-regulated. These pathways have been found to be related to tobacco mosaic disease. Of these common DEGs, the changes in expression of argonaute proteins, thioredoxins and peroxidases showed that the activation of RNA silencing and the destruction of redox balance can be induced by tobacco mosaic virus infection, resulting in the reset of biology process and damage in tobacco plants. Additionally, the occurrence of symptoms in co-infected tobacco plants was more early and serious than mono-infection, indicating that there is synergy between TMV and CMV in co-infected tobacco plants. The timely usage of antiviral agents and plant resistance inducers can decrease the incidence of tobacco mosaic disease through changing the expression of some DEGs, indicating that these genes can be used to screen novel plant resistance inducers and antiviral agents. Overall, our results were helpful in clarifying the mechanism of tobacco mosaic disease and provided novel strategies for the prevention of tobacco mosaic disease.
Project description:BACKGROUND: MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are two major classes of small RNAs. They play important regulatory roles in plants and animals by regulating transcription, stability and/or translation of target genes in a sequence-complementary dependent manner. Over 4,000 miRNAs and several classes of siRNAs have been identified in plants, but in tobacco only computational prediction has been performed and no tobacco-specific miRNA has been experimentally identified. Wounding is believed to induce defensive response in tobacco, but the mechanism responsible for this response is yet to be uncovered. RESULTS: To get insight into the role of small RNAs in damage-induced responses, we sequenced and analysed small RNA populations in roots and leaves from wounding or topping treated tobacco plants. In addition to confirmation of expression of 27 known miRNA families, we identified 59 novel tobacco-specific miRNA members of 38 families and a large number of loci generating phased 21- or 24-nt small RNAs (including ta-siRNAs). A number of miRNAs and phased small RNAs were found to be responsive to wounding or topping treatment. Targets of small RNAs were further surveyed by degradome sequencing. CONCLUSIONS: The expression changes of miRNAs and phased small RNAs responsive to wounding or topping and identification of defense related targets for these small RNAs suggest that the inducible defense response in tobacco might be controlled by pathways involving small RNAs.
Project description:<h4>Background</h4>Agrobacterium tumefaciens strain GV3101 (pMP90) is widely used in transient gene expression assays, including assays to study pathogen effectors and plant disease resistance mechanisms. However, inoculation of A. tumefaciens GV3101 into Nicotiana tabacum (tobacco) leaves prior to infiltration with pathogenic and non-host strains of Pseudomonas syringae results in suppression of macroscopic symptoms when compared with leaves pre-treated with a buffer control.<h4>Methodology/findings</h4>To gain further insight into the mechanistic basis of symptom suppression by A. tumefaciens we examined the effect of pre-treatment with A. tumefaciens on the growth of P. syringae, the production of the plant signalling molecules salicylic acid (SA) and abscisic acid (ABA), and the presence of callose deposits. Pre-treatment with A. tumefaciens reduced ABA levels, P. syringae multiplication and P. syringae-elicited SA and ABA production, but promoted increased callose deposition. However, pre-treatment with A. tumefaciens did not suppress necrosis or SA production in leaves inoculated with the elicitor HrpZ.<h4>Conclusions/significance</h4>Collectively, these results show that inoculation of N. tabacum leaves with A. tumefaciens alters plant hormone levels and plant defence responses to P. syringae, and demonstrate that researchers should consider the impact of A. tumefaciens on plant signal transduction when using A. tumefaciens-mediated transient expression assays to investigate ABA-regulated processes or pathogenicity and plant defence mechanisms.
Project description:beta-Glucan elicitor (GE), released from the cell wall of the phytopathogenic fungus Phytophthora megasperma by soybean glucanases, causes defense reactions in soybean. A GE-binding protein (GEBP) was purified from the membrane fraction of soybean root cells, and its cDNA was isolated. Expression of the cDNA clone in tobacco suspension cultured cells and in Escherichia coli conferred GE-binding activity to both. An antibody against the recombinant protein was found to inhibit the GE binding with the soybean cotyledon membrane fraction as well as the resulting accumulation of phytoalexin. Immunolocalization assays indicated that the GEBPs are located in the plasma membrane of root cells. These results suggest that the cDNA encodes a GE receptor and may mediate the signaling of the elicitor.