Proteomics

Dataset Information

0

Transcriptomic, proteomic, and physiological comparative analyses of flooding mitigation of the damage induced by low-temperature stress in direct seeded early indica rice at the seedling stage


ABSTRACT: Background: Low temperature (LT) often occurs at the seedling stage in the early rice-growing season, especially for direct seeded early-season indica rice, and using flooding irrigation can mitigate LT damage in rice seedlings. The molecular mechanism by which flooding mitigates the damage induced by LT stress has not been fully elucidated. Thus, LT stress at 8C, LT accompanied by flooding (LTF) and CK (control) treatments were established for three days to determine the transcriptomic, proteomic and physiological response in direct seeded rice seedlings at the seedling stage. Results: LT damaged chloroplasts, and thylakoid lamellae, and increased osmiophilic bodies and starch grains compared to CK, but LTF alleviated the damage to chloroplast structure caused by LT. The physiological characteristics of treated plants showed that compared with LT, LTF significantly increased the contents of rubisco, chlorophyll, PEPCK, ATP and GA3 but significantly decreased soluble protein, MDA and ABA contents. 4D-label-free quantitative proteomic profiling showed that photosynthesis-responsive proteins, such as phytochrome, as well as chlorophyll and the tricarboxylic acid cycle were significantly downregulated in LT/CK and LTF/CK comparison groups. However, compared with LT, phytochrome, chlorophyllide oxygenase activity and the glucan branching enzyme in LTF were significantly upregulated in rice leaves. Transcriptomic and proteomic studies identified 72818 transcripts and 5639 proteins, and 4983 genes that were identified at both the transcriptome and proteome levels. Differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were significantly enriched in glycine, serine and threonine metabolism, biosynthesis of secondary metabolites, glycolysis/gluconeogenesis and metabolic pathways. Conclusion: Through transcriptomic, proteomic and physiological analyses, we determined that a variety of metabolic pathway changes were induced by LT and LTF. GO and KEGG enrichment analyses demonstrated that DEGs and DEPs were associated with photosynthesis pathways, antioxidant enzymes and energy metabolism pathway-related proteins. Our study provided new insights for efforts to reduce the damage to direct seeded rice caused by low-temperature stress and provided a breeding target for low temperature flooding-resistant cultivars. Further analysis of translational regulation and metabolites may help to elucidate the molecular mechanisms by which flooding mitigates low-temperature stress in direct seeded early indica rice at the seedling stage.

INSTRUMENT(S): Q Exactive Plus

ORGANISM(S): Oryza Sativa (rice)

TISSUE(S): Leaf

SUBMITTER: wenxia Wang  

LAB HEAD: Wenxia wang

PROVIDER: PXD024034 | Pride | 2021-09-10

REPOSITORIES: Pride

altmetric image

Publications

Transcriptomic, proteomic, and physiological comparative analyses of flooding mitigation of the damage induced by low-temperature stress in direct seeded early indica rice at the seedling stage.

Wang Wenxia W   Du Jie J   Chen Liming L   Zeng Yongjun Y   Tan Xueming X   Shi Qinghua Q   Pan Xiaohua X   Wu Ziming Z   Zeng Yanhua Y  

BMC genomics 20210312 1


<h4>Background</h4>Low temperature (LT) often occurs at the seedling stage in the early rice-growing season, especially for direct seeded early-season indica rice, and using flooding irrigation can mitigate LT damage in rice seedlings. The molecular mechanism by which flooding mitigates the damage induced by LT stress has not been fully elucidated. Thus, LT stress at 8 °C, LT accompanied by flooding (LTF) and CK (control) treatments were established for 3 days to determine the transcriptomic, pr  ...[more]

Similar Datasets

2007-02-15 | GSE6720 | GEO
2013-12-26 | E-GEOD-36972 | biostudies-arrayexpress
2012-12-26 | E-GEOD-32704 | biostudies-arrayexpress
2017-09-01 | GSE102494 | GEO
2011-11-09 | GSE33265 | GEO
2017-12-08 | GSE107805 | GEO
2023-02-11 | GSE216360 | GEO
2023-02-11 | GSE216361 | GEO
2021-06-30 | GSE124618 | GEO
2011-10-27 | GSE23211 | GEO