Glutamine attenuates renal ischemia-reperfusion injury and prevents acute kidney damage
Ontology highlight
ABSTRACT: Acute kidney injury (AKI) represents a common complication in critically ill patients that is associated with an increased morbidity and mortality. Currently, no effective treatment options are available. Here, we show that glutamine significantly attenuates leukocyte recruitment and inflammatory signaling in human and murine tubular epithelial cells (TECs). In a murine AKI model induced by ischemia-reperfusion-injury (IRI) we show that glutamine causes transcriptomic and proteomic reprogramming in renal TECs and neutrophils, resulting in decreased epithelial apoptosis, neutrophil recruitment and improved mitochondrial functionality and respiration provoked by an ameliorated oxidative phosphorylation. We identify the proteins glutamine gamma glutamyltransferase 2 (Tgm2) and apoptosis signal-regulating kinase (Ask1) as the major targets of glutamine in apoptotic signaling. Increased Tgm2 expression and reduced Ask1 activation result in decreased JNK activation leading to a diminished mitochondrial intrinsic apoptosis in kidneys upon IRI-induced AKI and under hypoxia or following TNFα-treatment of TECs. Consequently, glutamine administration attenuated kidney injury in vivo during AKI progression as well as TEC viability in vitro under inflammatory and hypoxic conditions.
INSTRUMENT(S): LTQ Orbitrap Elite
ORGANISM(S): Mus Musculus (mouse)
TISSUE(S): Kidney
DISEASE(S): Acute Kidney Failure
SUBMITTER: Nicolas Nalpas
LAB HEAD: Jan Rossaint
PROVIDER: PXD029723 | Pride | 2023-03-11
REPOSITORIES: Pride
ACCESS DATA