Proteomics

Dataset Information

0

Elucidating colony bloom formation mechanism of a harmful alga Phaeocystis globosa (Prymnesiophyceae) using metaproteomics


ABSTRACT: Phaeocystis is a globally distributed Prymnesiophyceae genus and usually forms massive harmful colony blooms, which impact marine ecosystem, mariculture, human health, and even threaten coastal nuclear power plant safety. However, the mechanisms behind the colony formation from the solitary cells remain poorly understood. Here, we investigated metabolic processes of both solitary and non-flagellated colonial cells of Phaeocystis globosa at different colonial bloom stages using a metaproteomic approach. Temperature was significantly correlated with Phaeocystis colony bloom formation, and the flagellated motile solitary cells with abundant flagellum-associated proteins, such as tubulin and dynein, were the exclusive cellular morphotype at the solitary cell stage featured with temperatures ≥ 21℃. When the temperature decreased to <21℃, tiny colonies appeared and the flagellum-associated proteins were identified lower abundances in both solitary and non-flagellated colonial cells, while proteins involved in biosynthesis, chain polymerization and aggregation of glycosaminoglycan (GAG), a key constituent of gelatinous matrix, were identified higher abundances, indicating the central role of active GAG biosynthesis during the colony formation. Furthermore, light utilization, carbon fixation, nitrogen assimilation, and amino acid and protein synthesis were also enhanced to provide sufficient energy and substrates for GAG biosynthesis. This study highlighted that temperature induced re-allocation of energy and substances toward GAG biosynthesis is essential for colony bloom formation of P. globosa.

INSTRUMENT(S): Q Exactive HF

ORGANISM(S): Phaeocystis Globosa

TISSUE(S): Whole Body

SUBMITTER: Huamin Cheng  

LAB HEAD: Dazhi Wang

PROVIDER: PXD035588 | Pride | 2023-02-10

REPOSITORIES: Pride

altmetric image

Publications

Elucidating colony bloom formation mechanism of a harmful alga Phaeocystis globosa (Prymnesiophyceae) using metaproteomics.

Cheng Hua-Min HM   Zhang Shu-Feng SF   Ning Xiao-Lian XL   Peng Jian-Xiang JX   Li Dong-Xu DX   Zhang Hao H   Zhang Kun K   Lin Lin L   Liu Si-Qi SQ   Smith Walker O WO   Wang Da-Zhi DZ  

The Science of the total environment 20230126


Phaeocystis is a globally distributed Prymnesiophyte genus and usually forms massive harmful colony blooms, which impact marine ecosystem, mariculture, human health, and even threaten coastal nuclear power plant safety. However, the mechanisms behind the colony formation from the solitary cells remain poorly understood. Here, we investigated metabolic processes of both solitary and non-flagellated colonial cells of Phaeocystis globosa at different colony bloom stages in the subtropical Beibu Gul  ...[more]

Similar Datasets

2019-05-30 | PXD005341 | Pride
2021-01-21 | PXD018006 | Pride
| PRJNA596748 | ENA
| PRJNA776989 | ENA
2021-06-07 | PXD019301 | Pride
2023-02-27 | PXD031524 | Pride
| PRJNA702912 | ENA
2018-12-15 | GSE102608 | GEO
2018-04-13 | GSE87447 | GEO
2018-09-06 | GSE119512 | GEO