Proteomics

Dataset Information

0

Elexacaftor/VX-445-mediated CFTR interactome remodeling reveals differential correction driven by mutation-specific translational dynamics


ABSTRACT: Cystic fibrosis (CF) is one of the most prevalent lethal genetic diseases with over 2000 identified genetic variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Pharmacological chaperones such as Lumacaftor (VX-809), Tezacaftor (VX-661) and Elexacaftor (VX-445) treat mutation-induced defects by stabilizing CFTR and are called correctors. These correctors improve proper folding and thus facilitate processing and trafficking to increase the amount of functional CFTR on the cell surface. Yet, CFTR variants display differential responses to each corrector. Here, we report variants P67L and L206W respond similarly to VX-809 but divergently to VX-445 with P67L exhibiting little rescue when treated with VX-445. We investigate the underlying cellular mechanisms of how CFTR biogenesis is altered by correctors in these variants. Affinity purification-mass spectrometry (AP-MS) multiplexed with isobaric Tandem Mass Tags (TMT) was used to quantify CFTR protein-protein interaction changes between variants P67L and L206W. VX-445 facilitates unique proteostasis factor interactions especially in translation, folding, and degradation pathways in a CFTR variant-dependent manner. A number of these interacting proteins knocked down by siRNA, such as ribosomal subunit proteins, moderately rescued fully glycosylated P67L. Importantly, these knock-downs sensitize P67L to VX-445 and further enhance the correction of this variant. Our results provide a better understanding of VX-445 biological mechanism of action and reveal cellular targets that may sensitize unresponsive CFTR variants to known and available correctors.

INSTRUMENT(S): Orbitrap Fusion

ORGANISM(S): Homo Sapiens (human)

TISSUE(S): Cell Culture, Kidney

SUBMITTER: Jonathan Davies  

LAB HEAD: Lars Plate

PROVIDER: PXD039773 | Pride | 2023-09-18

REPOSITORIES: Pride

altmetric image

Publications

Elexacaftor/VX-445-mediated CFTR interactome remodeling reveals differential correction driven by mutation-specific translational dynamics.

Kim Minsoo M   McDonald Eli Fritz EF   Sabusap Carleen Mae P CMP   Timalsina Bibek B   Joshi Disha D   Hong Jeong S JS   Rab Andras A   Sorscher Eric J EJ   Plate Lars L  

The Journal of biological chemistry 20230909 10


Cystic fibrosis (CF) is one of the most prevalent lethal genetic diseases with over 2000 identified mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Pharmacological chaperones such as lumacaftor (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445) treat mutation-induced defects by stabilizing CFTR and are called correctors. These correctors improve proper folding and thus facilitate processing and trafficking to increase the amount of functional CFTR on the ce  ...[more]

Similar Datasets

2022-05-04 | PXD032836 | Pride
2020-11-20 | PXD019427 | Pride
2010-05-25 | E-GEOD-8763 | biostudies-arrayexpress
2024-01-26 | PXD042481 | Pride
2022-08-11 | PXD028393 | Pride
2019-05-11 | GSE129168 | GEO
2021-04-27 | PXD023091 | Pride
2010-05-25 | E-GEOD-11968 | biostudies-arrayexpress
2010-06-06 | E-GEOD-1688 | biostudies-arrayexpress
2021-12-05 | PXD018386 | Pride