Proteomics

Dataset Information

0

Oxidative stress induces lysosomal membrane permeabilization and ceramide accumulation in retinal pigment epithelial cells


ABSTRACT: Oxidative stress has been implicated in the pathogenesis of age-related macular degeneration(AMD), the leading cause of blindness in the elderly, with retinal pigment epithelial (RPE) cells playing a key role. To better understand the cytotoxic mechanisms underlying oxidative stress, we used cell culture and mouse models of iron overload, as iron can catalyze reactive oxygen species formation in the RPE. Iron-loading of cultured iPS-RPE cells increased lysosomal abundance, impaired proteolysis, and reduced the activity of a subset of lysosomal enzymes,including lysosomal acid lipase and acid sphingomyelinase. In a murine model of systemiciron overload, RPE cells accumulated lipid peroxidation adducts and lysosomes, developed progressive hypertrophy, and underwent cell death. Proteomic and lipidomic analyses revealed accumulation of lysosomal proteins, ceramide biosynthetic enzymes, and ceramides. The proteolytic enzyme cathepsin D had impaired maturation. A large proportion oflysosomes were galectin-3 positive, suggesting cytotoxic lysosomal membrane permeabilization (LMP). Collectively, these results demonstrate that iron overload induces lysosomal accumulation and impairs lysosomal function, likely due to iron-induced lipid peroxides that can inhibit lysosomal enzymes.

INSTRUMENT(S): Q Exactive HF

ORGANISM(S): Mus Musculus (mouse)

SUBMITTER: Hossein Fazelinia  

LAB HEAD: Joshua Dunaief, PhD, MD

PROVIDER: PXD043613 | Pride | 2023-07-19

REPOSITORIES: Pride

altmetric image

Publications


Oxidative stress has been implicated in the pathogenesis of age-related macular degeneration, the leading cause of blindness in older adults, with retinal pigment epithelium (RPE) cells playing a key role. To better understand the cytotoxic mechanisms underlying oxidative stress, we used cell culture and mouse models of iron overload, as iron can catalyze reactive oxygen species formation in the RPE. Iron-loading of cultured induced pluripotent stem cell-derived RPE cells increased lysosomal abu  ...[more]

Similar Datasets

2023-07-13 | GSE237309 | GEO
2021-11-17 | GSE184520 | GEO
2023-03-31 | PXD039881 | Pride
2020-11-24 | PXD020361 | Pride
2007-03-01 | E-MEXP-982 | biostudies-arrayexpress
2023-06-24 | GSE224000 | GEO
2022-07-11 | PXD018624 | Pride
2007-11-30 | GSE9726 | GEO
2018-02-13 | GSE86292 | GEO
2018-02-13 | GSE86236 | GEO