ABSTRACT: To validate the pyruvoyl prosthetic group instead of the serine residue that exists in the N-terminal of the α-chain within the mature PsiD enzyme
Project description:Identifying putative transcription factor target genes by combining CRISPR/Cas9-based transcriptional activation with RNAseq in Drosophila S2R+ cells. This study focuses on the transcription factors Twist and Snail, singly and together. RNA from Drosophila cells following CRISPR/Cas9-based activation of Twist, Snail, or Twist and Snail together, compared with non-targeting sgRNA. Two biological replicates for each experiment
Project description:Methylphosphonate synthase (MPnS) produces methylphosphonate, a metabolic precursor to methane in the upper ocean. Here, we determine a 2.35-angstrom resolution structure of MPnS and discover that it has an unusual 2-histidine-1-glutamine iron-coordinating triad. We further solve the structure of a related enzyme, hydroxyethylphosphonate dioxygenase from Streptomyces albus (SaHEPD), and find that it displays the same motif. SaHEPD can be converted into an MPnS by mutation of glutamine-adjacent residues, identifying the molecular requirements for methylphosphonate synthesis. Using these sequence markers, we find numerous putative MPnSs in marine microbiomes and confirm that MPnS is present in the abundant Pelagibacter ubique. The ubiquity of MPnS-containing microbes supports the proposal that methylphosphonate is a source of methane in the upper, aerobic ocean, where phosphorus-starved microbes catabolize methylphosphonate for its phosphorus.
Project description:The inadequate function of the antigen presenting cells, such as dendritic cells (DCs) in cancer is one of the major factors leading to compromised anti-tumor immune response. Cell-to-cell interactions and cell migration are essential features of the immunological response in cancer. Vascular endothelial growth factor (VEGF) has been shown to affect DCs differentiation and maturation processes, thus leading to impaired DCs function. This study aimed to compare the expression of adherence and cytoskeleton-related genes between mature monocyte-derived dendritic cells (mDCs) and mDCs previously exposed to VEGF (mDCVs). VEGF is known to stimulate cell migration and actin rearrangement, but its association with adhesion molecules has not been largely explored in the context of DCs. Our results show that immature human DCs exposed to VEGF up-regulated CD80 and CD86, typical cell surface markers of DC maturation. However, unlike mDCs, mDCVs showed alterations in cell morphology, with broad changes in the characteristic cytoplasmic processes. DNA microarray analysis revealed that mDCVs up-regulated a significant subset of genes related to cell migration, including cell adhesion molecules and related signaling pathways as well as cytoskeleton-related genes. Our results suggest that VEGF, known to be involved in the inhibition of DC maturation, interferes in cell mechanisms leading to cytoskeleton reorganization and the expression of cell adhesion molecules. Cell morphology is associated with DC maturation and migration, both impaired in pathological conditions such as cancer. Keywords: Gene expression profiling Gene expression profiling was carried out in freshly isolated CD14+ cells prior to cultivation (“D0” samples) and in DCs after 6 days (“D6” samples) and 7 days in culture, with or without VEGF treatment (“D7V” and “D7” samples, respectively). Blood samples were collected on the same day and processed concomitantly. Cell culture, RNA extraction, and microarray hybridization were also carried out simultaneously in an attempt to minimize technical inconsistencies. A total of 14 independent microarray hybridizations were carried out with oligonucleotide microarrays, covering approximately 55,000 human transcripts (Whole Genome CodeLink™ Bioarrays, GE Healthcare). Target preparation and hybridization procedures strictly followed protocols provided by the manufacturer.Arrays were scanned following the recommended scanning procedure and settings for use with CodeLink bioarrays (GE Healthcare) on GenePix 4000B Array Scanner/GenePix Pro 4.1 software (Axon Instruments).
Project description:Non-ribosomal peptide synthetases are important enzymes for the assembly of complex peptide natural products. Within these multi-modular assembly lines, condensation domains perform the central function of chain assembly, typically by forming a peptide bond between two peptidyl carrier protein (PCP)-bound substrates. In this work, we report the first structural snapshots of a condensation domain in complex with an aminoacyl-PCP acceptor substrate. These structures allow the identification of a mechanism that controls access of acceptor substrates to the active site in condensation domains. The structures of this previously uncharacterized complex also allow us to demonstrate that condensation domain active sites do not contain a distinct pocket to select the side chain of the acceptor substrate during peptide assembly but that residues within the active site motif can instead serve to tune the selectivity of these central biosynthetic domains.
Project description:Protein glycosylation is a critical protein modification. In biogenic membranes of eukaryotes and archaea, these reactions require activated mannose in the form of the lipid conjugate dolichylphosphate mannose (Dol-P-Man). The membrane protein dolichylphosphate mannose synthase (DPMS) catalyzes the reaction whereby mannose is transferred from GDP-mannose to the dolichol carrier Dol-P, to yield Dol-P-Man. Failure to produce or utilize Dol-P-Man compromises organism viability, and in humans, several mutations in the human dpm1 gene lead to congenital disorders of glycosylation (CDG). Here, we report three high-resolution crystal structures of archaeal DPMS from Pyrococcus furiosus, in complex with nucleotide, donor, and glycolipid product. The structures offer snapshots along the catalytic cycle, and reveal how lipid binding couples to movements of interface helices, metal binding, and acceptor loop dynamics to control critical events leading to Dol-P-Man synthesis. The structures also rationalize the loss of dolichylphosphate mannose synthase function in dpm1-associated CDG.The generation of glycolipid dolichylphosphate mannose (Dol-P-Man) is a critical step for protein glycosylation and GPI anchor synthesis. Here the authors report the structure of dolichylphosphate mannose synthase in complex with bound nucleotide and donor to provide insight into the mechanism of Dol-P-Man synthesis.
Project description:Chitin, the most abundant aminopolysaccharide in nature, is an extracellular polymer consisting of N-acetylglucosamine (GlcNAc) units1. The key reactions of chitin biosynthesis are catalysed by chitin synthase2-4, a membrane-integrated glycosyltransferase that transfers GlcNAc from UDP-GlcNAc to a growing chitin chain. However, the precise mechanism of this process has yet to be elucidated. Here we report five cryo-electron microscopy structures of a chitin synthase from the devastating soybean root rot pathogenic oomycete Phytophthora sojae (PsChs1). They represent the apo, GlcNAc-bound, nascent chitin oligomer-bound, UDP-bound (post-synthesis) and chitin synthase inhibitor nikkomycin Z-bound states of the enzyme, providing detailed views into the multiple steps of chitin biosynthesis and its competitive inhibition. The structures reveal the chitin synthesis reaction chamber that has the substrate-binding site, the catalytic centre and the entrance to the polymer-translocating channel that allows the product polymer to be discharged. This arrangement reflects consecutive key events in chitin biosynthesis from UDP-GlcNAc binding and polymer elongation to the release of the product. We identified a swinging loop within the chitin-translocating channel, which acts as a 'gate lock' that prevents the substrate from leaving while directing the product polymer into the translocating channel for discharge to the extracellular side of the cell membrane. This work reveals the directional multistep mechanism of chitin biosynthesis and provides a structural basis for inhibition of chitin synthesis.
Project description:Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis.
Project description:Thiomarinol is a naturally occurring double-headed antibiotic that is highly potent against methicillin-resistant Staphylococcus aureus. Its structure comprises two antimicrobial subcomponents, pseudomonic acid analogue and holothin, linked by an amide bond. TmlU was thought to be the sole enzyme responsible for this amide-bond formation. In contrast to this idea, we show that TmlU acts as a CoA ligase that activates pseudomonic acid as a thioester that is processed by the acetyltransferase HolE to catalyze the amidation. TmlU prefers complex acyl acids as substrates, whereas HolE is relatively promiscuous, accepting a range of acyl-CoA and amine substrates. Our results provide detailed biochemical information on thiomarinol biosynthesis, and evolutionary insight regarding how the pseudomonic acid and holothin pathways converge to generate this potent hybrid antibiotic. This work also demonstrates the potential of TmlU/HolE enzymes as engineering tools to generate new "hybrid" molecules.
Project description:Cysteine can be synthesized by tRNA-dependent mechanism using a two-step indirect pathway, where O-phosphoseryl-tRNA synthetase (SepRS) catalyzes the ligation of a mismatching O-phosphoserine (Sep) to tRNACys followed by the conversion of tRNA-bounded Sep into cysteine by Sep-tRNA:Cys-tRNA synthase (SepCysS). In ancestral methanogens, a third protein SepCysE forms a bridge between the two enzymes to create a ternary complex named the transsulfursome. By combination of X-ray crystallography, SAXS and EM, together with biochemical evidences, here we show that the three domains of SepCysE each bind SepRS, SepCysS, and tRNACys, respectively, which mediates the dynamic architecture of the transsulfursome and thus enables a global long-range channeling of tRNACys between SepRS and SepCysS distant active sites. This channeling mechanism could facilitate the consecutive reactions of the two-step indirect pathway of Cys-tRNACys synthesis (tRNA-dependent cysteine biosynthesis) to prevent challenge of translational fidelity, and may reflect the mechanism that cysteine was originally added into genetic code.
Project description:Isoflavonoids play important roles in plant defense and also exhibit a range of mammalian health-promoting activities. Their biosynthesis is initiated by two enzymes with unusual catalytic activities; 2-hydroxyisoflavanone synthase (2-HIS), a membrane-bound cytochrome P450 catalyzing a coupled aryl-ring migration and hydroxylation, and 2-hydroxyisoflavanone dehydratase (2-HID), a member of a large carboxylesterase family that paradoxically catalyzes dehydration of 2-hydroxyisoflavanones to isoflavone. Here we report the crystal structures of 2-HIS from Medicago truncatula and 2-HID from Pueraria lobata. The 2-HIS structure reveals a unique cytochrome P450 conformation and heme and substrate binding mode that facilitate the coupled aryl-ring migration and hydroxylation reactions. The 2-HID structure reveals the active site architecture and putative catalytic residues for the dual dehydratase and carboxylesterase activities. Mutagenesis studies revealed key residues involved in substrate binding and specificity. Understanding the structural basis of isoflavone biosynthesis will facilitate the engineering of new bioactive isoflavonoids.