Ontology highlight
ABSTRACT:
INSTRUMENT(S):
ORGANISM(S): Neisseria Gonorrhoeae
SUBMITTER:
Massimiliano Gaetani
LAB HEAD: Massimiliano Gaetani
PROVIDER: PXD063107 | Pride | 2026-01-19
REPOSITORIES: Pride
| Action | DRS | |||
|---|---|---|---|---|
| 20250226_nU5_Exp2_Amir_B1.msf | Msf | |||
| 20250226_nU5_Exp2_Amir_B2_01.raw | Raw | |||
| 20250226_nU5_Exp2_Amir_B2_02.raw | Raw | |||
| 20250226_nU5_Exp2_Amir_B2_03.raw | Raw | |||
| 20250226_nU5_Exp2_Amir_B2_04.raw | Raw |
Items per page: 5 1 - 5 of 18 |

Krishnan Aarti A Anahtar Melis N MN Valeri Jacqueline A JA Jin Wengong W Donghia Nina M NM Sieben Leif L Luttens Andreas A Zhang Yu Y Modaresi Seyed Majed SM Hennes Andrew A Fromer Jenna J Bandyopadhyay Parijat P Chen Jonathan C JC Rehman Danyal D Desai Ronak R Edwards Paige P Lach Ryan S RS Aschtgen Marie-Stéphanie MS Gaborieau Margaux M Gaetani Massimiliano M Palace Samantha G SG Omori Satotaka S Khonde Lutete L Moroz Yurii S YS Blough Bruce B Jin Chunyang C Loh Edmund E Grad Yonatan H YH Saei Amir Ata AA Coley Connor W CW Wong Felix F Collins James J JJ
Cell 20250814 21
The antimicrobial resistance crisis necessitates structurally distinct antibiotics. While deep learning approaches can identify antibacterial compounds from existing libraries, structural novelty remains limited. Here, we developed a generative artificial intelligence framework for designing de novo antibiotics through two approaches: a fragment-based method to comprehensively screen >10<sup>7</sup> chemical fragments in silico against Neisseria gonorrhoeae or Staphylococcus aureus, subsequently ...[more]