Project description:Natural silks crafted by spiders comprise some of the most versatile materials known. Artificial silks-based on the sequences of their natural brethren-replicate some desirable biophysical properties and are increasingly utilized in commercial and medical applications today. To characterize the repertoire of protein sequences giving silks their biophysical properties and to determine the set of expressed genes across each unique silk gland contributing to the formation of natural silks, we report here draft genomic and transcriptomic assemblies of Darwin's bark spider, Caerostris darwini, an orb-weaving spider whose dragline is one of the toughest known biomaterials on Earth. We identify at least 31 putative spidroin genes, with expansion of multiple spidroin gene classes relative to the golden orb-weaver, Trichonephila clavipes. We observed substantial sharing of spidroin repetitive sequence motifs between species as well as new motifs unique to C. darwini. Comparative gene expression analyses across six silk gland isolates in females plus a composite isolate of all silk glands in males demonstrated gland and sex-specific expression of spidroins, facilitating putative assignment of novel spidroin genes to classes. Broad expression of spidroins across silk gland types suggests that silks emanating from a given gland represent composite materials to a greater extent than previously appreciated. We hypothesize that the extraordinary toughness of C. darwini major ampullate dragline silk may relate to the unique protein composition of major ampullate spidroins, combined with the relatively high expression of stretchy flagelliform spidroins whose union into a single fiber may be aided by novel motifs and cassettes that act as molecule-binding helices. Our assemblies extend the catalog of sequences and sets of expressed genes that confer the unique biophysical properties observed in natural silks.
Project description:Interspecific coevolution is well described, but we know significantly less about how multiple traits coevolve within a species, particularly between behavioral traits and biomechanical properties of animals' "extended phenotypes". In orb weaving spiders, coevolution of spider behavior with ecological and physical traits of their webs is expected. Darwin's bark spider (Caerostris darwini) bridges large water bodies, building the largest known orb webs utilizing the toughest known silk. Here, we examine C. darwini web building behaviors to establish how bridge lines are formed over water. We also test the prediction that this spider's unique web ecology and architecture coevolved with new web building behaviors.We observed C. darwini in its natural habitat and filmed web building. We observed 90 web building events, and compared web building behaviors to other species of orb web spiders.Caerostris darwini uses a unique set of behaviors, some unknown in other spiders, to construct its enormous webs. First, the spiders release unusually large amounts of bridging silk into the air, which is then carried downwind, across the water body, establishing bridge lines. Second, the spiders perform almost no web site exploration. Third, they construct the orb capture area below the initial bridge line. In contrast to all known orb-weavers, the web hub is therefore not part of the initial bridge line but is instead built de novo. Fourth, the orb contains two types of radial threads, with those in the upper half of the web doubled. These unique behaviors result in a giant, yet rather simplified web. Our results continue to build evidence for the coevolution of behavioral (web building), ecological (web microhabitat) and biomaterial (silk biomechanics) traits that combined allow C. darwini to occupy a unique niche among spiders.
Project description:The draft genome of L. sativa (lettuce) cv. Tizian was sequenced in two Illumina sequencing runs, mate pair and shotgun. This entry contains the RAW sequencing data.