Project description:Members of the genus Acinetobacter drag attention due to their importance in microbial pathology and biotechnology. OmpA is a porin with multifaceted functions in different species of Acinetobacter. In this study we identified this protein in Acinetobacter sp. SA01, an efficient phenol degrader strain, in different cellular and sub-cellular compartments (such as OM, OMV, biofilm and extracellular environment). Differential expression of proteins, including OmpA, under two conditions of phenol and ethanol supplementation was assessed using shotgun proteomics.
Project description:Studies of expression of mechanims of defense of the Acinetobacter sp.5-2Ac.02 from airborne hospital environment under stress conditions, such as SOS response (ROS response, heavy metals resistant mechanisms, peptides), as well as Quorum network (acetoin cluster and aromatics biodegradation cluster). Characterization functional of AcoN-like as negative regulator protein from acetoin cluster in Acinetobacter spp. Strains
Project description:Gram-negative bacterium Acinetobacter sp. Tol 5 exhibits high adhesiveness to various surfaces of general materials, from hydrophobic plastics to hydrophilic glass and metals, via AtaA, an Acinetobacter trimeric autotransporter adhesin Although the adhesion of Tol 5 is nonspecific, Tol 5 cells may have prefer materials for adhesion. Here, we examined the adhesion of Tol 5 and other bacteria expressing different TAAs to various materials, including antiadhesive surfaces. The results highlighted the stickiness of Tol 5 through the action of AtaA, which enabled Tol 5 cells to adhere even to antiadhesive materials, including polytetrafluoroethylene with a low surface free energy, a hydrophilic polymer brush with steric hindrance, and mica with an ultrasmooth surface. Single-cell force spectroscopy as an atomic force microscopy technique revealed the strong cell adhesion force of Tol 5 to these antiadhesive materials. Nevertheless, Tol 5 cells showed a weak adhesion force toward a zwitterionic 2-methacryloyloxyethyl-phosphorylcholine (MPC) polymer-coated surface. Dynamic flow chamber experiments revealed that Tol 5 cells, once attached to the MPC polymer-coated surface, were exfoliated by weak shear stress. The underlying adhesive mechanism was presumed to involve exchangeable, weakly bound water molecules. Our results will contribute to the understanding and control of cell adhesion of Tol 5 for immobilized bioprocess applications and other TAA-expressing pathogenic bacteria of medical importance.
Project description:Acinetobacter sp. strain Tol 5 is a nonpathogenic Gram-negative bacterium with biotechnological and environmental applications. Here, we report the complete genome sequence of Acinetobacter sp. strain Tol 5, which has a genome size of 4,799,506 bp and a G+C content of 38.1%.