Project description:Heat Shock Protein 90 inhibitors (HSP90i) have shown encouraging activity in EML4-ALK+ non-small cell lung cancer (NSCLC) patients but clinical responses have been heterogeneous. It has been suggested that distinct EML4-ALK variants may have a differential impact on the response to HSP90 inhibition. Here, we show that NSCLC cells harboring the most common EML4-ALK variant 1 (v1) or variant 3 (v3) are similarly sensitive to HSP90i. To discover new genetic alterations that could be involved in stratifying sensitivity, we performed a genome-wide CRISPR/Cas9 knockout screen and found that loss of Spindly increases the sensitivity of EML4-ALK v3, but not v1, NSCLC cells to low concentrations of HSP90i from three distinct chemical families. Upon loss of Spindly, prolonged exposure to low concentrations of HSP90i impairs chromosome congression and cellular fitness. Collectively, our data suggest that mutations leading to loss of Spindly in EML4-ALK v3 NSCLC patients may increase sensitivity to low doses of HSP90i.
Project description:Background: Chromosomal inversions involving anaplastic lymphoma kinase (ALK) and echinoderm microtubule associated protein like 4 (EML4) generate a fusion protein EML4-ALK in non-small cell lung cancer (NSCLC). The understanding of EML4-ALK function can be improved by a functional study using normal human cells. Methods: Here we for the first time conduct such study to examine the effects of EML4-ALK on cell proliferation, cellular senescence, DNA damage, gene expression profiles and transformed phenotypes. Results: The lentiviral expression of EML4-ALK in mortal, normal human fibroblasts caused, through its constitutive ALK kinase activity, an early induction of cellular senescence with accumulated DNA damage, upregulation of p16INK4A and p21WAF1, and senescence-associated -galactosidase (SA-β-gal) activity. In contrast, when EML4-ALK was expressed in normal human fibroblasts transduced with telomerase reverse transcriptase (hTERT), which is activated in the vast majority of NSCLC, the cells showed accelerated proliferation and acquired anchorage-independent growth ability in soft-agar medium, without accumulated DNA damage, chromosome aberration, nor p53 mutation. EML4-ALK induced the phosphorylation of STAT3 in both mortal and hTERT-transduced cells, but RNA sequencing analysis suggested that the different signaling pathways contributed to the different phenotypic outcomes in these cells. While EML4-ALK also induced anchorage-independent growth in hTERT-immortalized human bronchial epithelial cells in vitro, the expression of EML4-ALK alone did not cause detectable in vivo tumorigenicity in immunodeficient mice. Conclusions: Our data indicate that the expression of hTERT is critical for EML4-ALK to manifest its in vitro transforming activity in human cells. This study provides the isogenic pairs of human cells with and without EML4-ALK expression.
Project description:Anaplastic lymphoma kinase (ALK) fusion variants in non-small-cell-lung cancer (NSCLC) consist of numerous dimerising fusion partners, with the most common being EML4. Clinical data suggests that the degree of treatment benefit in response to ALK tyrosine kinase inhibitors (TKIs) differs among the variant present in the patient tumor. Therefore, a better understanding the oncogenic signaling networks driven by different ALK-fusion variants is important. Here, we developed highly controlled doxycycline-inducible cell models bearing four different ALK fusion proteins, namely EML4-ALK-V1, EML4-ALK-V3, KIF5B-ALK, and TFG-ALK, in the context of non-tumorigenic NL20 human bronchial epithelial cells. These were complimented by patient-derived NSCLC cell lines harboring either EML4-ALK-V1 or EML4-ALK-V3 fusions. RNAseq and phosphoproteomics analysis were employed to identify dysregulated genes and hyper/hypo-phosphorylated proteins associated with ALK fusion expression. Among ALK fusion induced responses, we noted a robust inflammatory signature that included up-regulation of the Serpin B4 serine protease inhibitor in both NL20-inducible cell models and ALK-positive NSCLC patient-derived cell lines. We show that STAT3 is a major transcriptional regulator of SERPINB4 downstream of ALK fusions, along with NF-B and AP1. The upregulation of SERPINB4 promotes survival of ALK fusion expressing cells and inhibits natural killer (NK) cell-mediated cytotoxicity. In conclusion, our study reveals a novel ALK downstream survival axis that regulates Serpin B4 expression and identifies a molecular target that has potential for therapeutic impact targeting the immune response together with ALK TKIs in NSCLC.
Project description:Metastasis poses a major challenge in cancer management, including EML4-ALK-rearranged non-small cell lung cancer (NSCLC). As cell migration is a critical step during metastasis, we assessed the anti-migratory activities of several clinical ALK inhibitors in NSCLC cells and observed differential anti-migratory capabilities despite similar ALK inhibition, with brigatinib displaying superior anti-migratory effects over other ALK inhibitors. Applying an unbiased in-situ mass spectrometry-based chemoproteomics approach, we determined the proteome-wide target profile of brigatinib in EML4-ALK+ NSCLC cells. Dose-dependent and cross-competitive chemoproteomics suggested MARK2 and MARK3 as relevant brigatinib kinase targets. Functional validation showed that combined pharmacological inhibition or genetic modulation of MARK2/3 inhibited cell migration. Consistently, brigatinib treatment induced inhibitory YAP1 phosphorylation downstream of MARK2/3. Collectively, our data suggest that brigatinib exhibits unusual cross-phenotype polypharmacology as despite similar efficacy for inhibiting EML4-ALK-dependent cell proliferation as other ALK inhibitors, it more effectively prevented migration of NSCLC cells due to co-targeting of MARK2/3.
Project description:To clarify the downstream signal pathway of EML4-ALK in NSCLC, we performed Affymetrix GeneChip analysis using ALK inhibitor CH5424802-treated NCI-H2228 xenograft tumors, and comprehensively characterized the gene expression regulated by inhibition of activated ALK.
Project description:Acquired resistance to ALKi in NSCLC patients is attributed to gain of mutations in the ALK-EML4 fusion gene and an enhancement of the EGFR and/or IGF1R pathways. Here, we explain the epigenetic change that drives the EGFR and IGF1R reactivation in the absence of the appearance of an ALK-EML4 mutated scenario.
Project description:Purpose: The goal of this study was to use enzyme activity as a proxy for profiling tumor progression and treatment response in an autochthonous mouse model of Alk-mutant non-small-cell lung cancer (NSCLC). The Eml4-Alk model was originally described in Maddalo et al., Nature 2014. Single-cell transcriptomic profiling of the Eml4-Alk NSCLC model was performed for unbiased discovery of the phenotypic landscape of Eml4-Alk and wild type mice. Methods: Single cell suspensions were prepared from excised lungs of Eml4-Alk and sex- and age-matched healthy, wild type C57/Bl6J mice. Suspensions were pooled from n=3 mice per condition, and then were enriched for cell viability and depleted for CD45+ cells. Single cells were processed using the 10X Genomics Single Cell 3’ platform using the Chromium Single Cell 3’ Library & Gel Bead Kit V2 kit (10X Genomics), per manufacturer’s protocol. Approximately 10,000 cells were loaded onto each channel and partitioned into Gel Beads in Emulsion (GEMs) in the 10x Chromium instrument. Following lysis of the captured cells, the released RNA was barcoded through reverse transcription in individual GEMs, and complementary DNA was generated and amplified. Libraries were constructed using a Single Cell 3’ Library and Gel Bead kit. The libraries were sequenced using an Illumina NovaSeq6000 sequencer on an Illumina NovaSeq SP flow cell. Results: Gene expression matrices were generated for each sample by the Cell Ranger (v.3.0.2) Pipeline coupled with mouse reference version GRCm38. The output filtered gene expression matrices were analyzed by Python software (v.3.9.0) with the scanpy package (v.1.7.2). For final analysis, genes expressed in at least three cells in the data and cells with > 200 genes detected were selected for further analyses, and low quality cells were removed based on number of total counts and percentage of mitochondrial genes expressed. Conclusions: This study provides the first (to the best of our knowledge) single-cell RNA-seq dataset of the Eml4-Alk autochthonous model of NSCLC.