Project description:These E. coli strains were grown with various signaling molecules and the expression profiles were determined. Keywords: addition of quorum and host hormone signals
Project description:Expression profile of E. coli BW25113 grown under standard laboratory atmosphere with a fine particulate matter (PM2.5) concentration of 17 mg m-3, under urban polluted atmosphere with a PM2.5 of 230 mg m-3 or under diesel exhaust atmosphere with a PM2.5 of 613 mg m-3. Expression profile of the diesel exhaust atmosphere-adapted E. coli strain T56-1 grown under diesel exhaust atmosphere.
Project description:Escherichia coli BW25113 is the parent strain of the Keio collection comprising nearly 4,000 single-gene deletion mutants. We report the complete 4,631,469-bp genome sequence of this strain and the key variations from the type strain E. coli MG1655.
Project description:The present study investigated the role(s) of RNase I (encoded by the rna gene) in Escherichia coli by comparative gene expression analysis of an rna mutant and the isogenic wild-type E. coli strain BW25113. The transcriptomic analysis aims to provide mechanistic insight into aberrant phenotypes observed in the RNase I-deficient mutant.
Project description:Glycerol is an attractive feedstock for biofuels since it accumulates as a byproduct during biodiesel operations; hence, it is interesting to consider converting glycerol to hydrogen using the formate hydrogen lyase system of Escherichia coli which converts pyruvate to hydrogen. Starting with Escherichia coli BW25113 frdC that lacks fumarate reductase to eliminate the negative effect of accumulated hydrogen on glycerol fermentation and by using both adaptive evolution and chemical mutagenesis combined with a selection method based on increased growth on glycerol, we obtained an improved strain, HW2, that produces 20-fold more hydrogen in glycerol medium (0.68 mmol/L/h) compared to that of frdC mutant. HW2 also grows 5-fold faster (0.25 1/h) than BW25113 frdC on glycerol, so it achieves a reasonable growth rate. Corroborating the increase in hydrogen production, glycerol dehydrogenase activity in HW2 increased 4-fold compared to BW25113 frdC. In addition, a whole-transcriptome study revealed that several pathways that would decrease hydrogen yields were repressed in HW2 (fbp, focA, and gatYZ) while a beneficial pathway, eno which encodes enolase was induced.