Project description:Saccharomyces cerevisiae is an excellent microorganism for industrial succinic acid production, but high succinic acid concentration will inhibit the growth of Saccharomyces cerevisiae then reduce the production of succinic acid. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different genetic backgrounds under different succinic acid stress, we hope to find the response mechanism of Saccharomyces cerevisiae to succinic acid.
Project description:LPS was used as a stressor to stimulate the model organism Saccharomyces cerevisiae. To detect extracellular metabolic information of VOCs. To provide a molecular basis for cellular metabolism of VOCs by proteome.
Project description:Investigation of Saccharomyces cerevisiae phosphate metabolism. Cells starved for phosphate, cells grown with intermediate and high phosphate concentrations, and PHO4 mutant cells examined. Keywords: other
Project description:Industrial bioethanol production may involve a low pH environment,improving the tolerance of S. cerevisiae to a low pH environment caused by inorganic acids may be of industrial importance to control bacterial contamination, increase ethanol yield and reduce production cost. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different ploidy under low pH stress, we hope to find the tolerance mechanism of Saccharomyces cerevisiae to low pH.
Project description:ppGpp accumulation caused by ectopic expression of RelA in Saccharomyces cerevisiae gave rise to marked changes in gene expression with both upregulation and downregulation, including changes in mitochondrial gene expression. The most prominent upregulation (38-fold) was detected in the function-unknown hypothetical gene YBR072C-A, followed by many other known stress-responsive genes. ppGpp acuumulation resulted in enhancement of tolerance against various stress stimuli, such as osmotic stress, ethanol, hydrogen peroxide, and high temperature.
Project description:Relative quantification of protein abundances of three yeast strains (Saccharomyces cerevisiae CEN.PK113-7D, Kluyveromyces marxianus CBS6556 and Yarrowia lipolytica W29) cultivate in chemostats under different conditions. The conditions for Saccharomyces cerevisiae CEN.PK113-7D are: - Standard condition – 30°C, pH 5.5 - High temperature - 36°C, pH 5.5 - Low pH - 30°C, pH 3.5 - Osmotic stress – 30°C, pH 5.5, 1M KCl The conditions for Kluyveromyces marxianus CBS6556 are: - Standard condition – 30°C, pH 5.5 - High temperature - 40°C, pH 5.5 - Low pH - 30°C, pH 3.5 - Osmotic stress – 30°C, pH 5.5, 0.6 M KCl The conditions for Yarrowia lipolytica W29 are: - Standard condition - 28°C, pH 5.5 - High temperature - 32°C, pH 5.5 - Low pH - 28°C, pH 3.5 This study is part of the OMICS data generation of CHASSY project (European Union’s Horizon 2020 grant agreement No 720824).
Project description:We combined the nuclear run-on (NRO) assay which labels and captures nascent transcripts with high throughput DNA sequencing to examine transcriptional activity in Saccharomyces cerevisiae.