Project description:Nucleocytoviricota viruses (NCVs) belong to a newly established phylum originally grouped as Nucleocytoplasmic large DNA viruses. NCVs are unique because of their large and complicated genomes that contain cellular genes with homologs from all kingdoms of life, raising intensive debates on their evolutional origins. Many NCVs pack their genomes inside massive icosahedral capsids assembled from thousands of proteins. Studying the assembly mechanism of such capsids has been challenging until breakthroughs from structural studies. Subsequently, several models of the capsid assembly were proposed, which provided some interesting insights on this elaborate process. In this review, we discuss three of the most recent assembly models as well as supporting experimental observations. Furthermore, we propose a new model that combines research developments from multiple sources. Investigation of the assembly process of these vast NCV capsids will facilitate future deciphering of the molecular mechanisms driving the formation of similar supramolecular complexes.
Project description:Aureococcus anophagefferens forms a model host-virus system with the "giant virus" Kratosvirus quantuckense. Studies to define its ribocell (uninfected) and virocell (virus-infected) forms are needed as these states co-occur during algal blooms. Previously, a link between light-derived energy, virus particle production, and virocell formation was noted. We explored how the time of day (morning, midday, or late day) of virus-host contact shaped virocell ontogeny. In parallel, we explored the dependence on light-derived energy in this mixotrophic plankter by inhibiting photosystem II, testing the role of heterotrophic energy in infection dynamics. Using flow cytometry and photochemical assessments, we examined the physiology of infected cells and controls, and estimated virus particle production. We observed differences between ribocell and virocell response to treatments, including reductions in virus particle production during reduced light duration) and PSII inhibition (i.e. "forced heterotrophy"). This work demonstrates the importance of light in shaping the fate of infected cells and provides insight into factors that constrain in situ blooms. Most significantly, we show that time of the solar day when a virus and host come into contact influences viral particle production, and therefore bloom dynamics; a factor that needs to be considered in bloom modeling work.
Project description:The nucleocytoplasmic large DNA viruses (NCLDV) possess unique characteristics that have drawn the attention of the scientific community, and they are now classified in the phylum Nucleocytoviricota. They are characterized by sharing many genes and have their own transcriptional apparatus, which provides certain independence from their host's machinery. Thus, the presence of a robust transcriptional apparatus has raised much discussion about the evolutionary aspects of these viruses and their genomes. Understanding the transcriptional process in NCLDV would provide information regarding their evolutionary history and a better comprehension of the biology of these viruses and their interaction with hosts. In this work, we reviewed NCLDV transcription and performed a comparative functional analysis of the groups of genes expressed at different times of infection of representatives of six different viral families of giant viruses. With this analysis, it was possible to observe a temporal profile of their gene expression and set of genes activated in specific phases throughout the multiplication cycle as a common characteristic of this group. Due to the lack of information regarding the transcriptional regulation process of this group of pathogens, we sought to provide information that contributes to and opens up the field for transcriptional studies of other viruses belonging to Nucleocytoviricota.
Project description:In this study we used transgenic mouse model to comapre two isolation techniques INTACT and FANS for the isolation of activated neuronal nuclei. Comparison is perfomed on multiple levels like isolation efficiency, membrane integrity, transcriptional and epigenetic state using RNA-seq and ATAC-seq