Project description:Viola vaginata, a perennial herb in subsection Stolonosae, is endemic to the snowy mountainous regions on the Sea of Japan side of Japan. Its complete chloroplast genome was 156,056 bp in length, comprising one large single-copy region (86,407 bp), one small single-copy region (17,301 bp), and two inverted repeat regions (27,174 bp each). It contained 111 unique genes, including 77 protein-coding genes, 30 transfer RNA genes, and 4 ribosomal RNA genes. Phylogenetic analysis placed V. vaginata in a clade with subsection Biobatae species and some Patellares species, while other Patellares species formed a distinct clade, contrasting with previous nuclear ITS results. These findings highlight the phylogenetic complexity within Viola.
Project description:The VIOLA ALBIDA complex is a complicated group with taxonomic problems having continuous leaf variations and composed of taxa related to the following names: Viola albida, V. albida var. takahashii, and V. chaerophylloides. As a first step to understanding the genomic nature of this complex, this study identified the whole chloroplast genome of V. albida. The genome is 157,692 bp in length (36.3% of GC content) and contains four subregions: a large single copy region of 86,220 bp, a small single copy region of 17,248 bp, and a pair of inverted regions of 27,112 bp each. An annotation of the gene identifies 111 unique genes, including 77 protein-coding genes, four rRNA genes, and 30 tRNA genes. The phylogenetic analysis of this genome with selected cp genomes from Viola identifies the close relationship between V. albida and V. ulleungdoensis. It is noteworthy that V. chaerophylloides, traditionally recognized as a member of the VIOLA ALBIDA complex, is genetically distant from V. albida and forms a sister group of all other members of the subsection Patellares. Our genome report is expected to serve as a basis for understanding the identity of the VIOLA ALBIDA complex.