Project description:Genes of the of Arabidopsis thaliana guard cells transcriptome that respond to high CO2 and darkness were identified and compared to the ABA- and low humidity treated samples of Experiment GSE41054 in Arabidopsis thaliana enriched guard cell samples.
Project description:To identify genes of the guard cell transcriptome of Arabidopsis thaliana enriched guard cell samples were compared with total leaf tissue. Genes of the abscisic acid and humidity response of Arabidopsis thaliana guard cells were identified by treatment with ABA-Spray and low humidity.
Project description:Background: The unprecedented rise in atmospheric CO2 concentration and injudicious fertilization or heterogeneous distribution of Mg in the soil warrant further research to understand the synergistic and holistic mechanisms involved in the plant growth regulation. The objective of this work is to understand responses in plants along with interactive effect of elevated CO2 and Mg levels by comparing data on single stress with that of combined stresses. Results: This study investigated the influence of elevated CO2 (800 μL L−1) on physiological and transcriptomic profiles in Arabidopsis cultured in hydroponic media treated with 1 μM (low), 1000 μM (normal) and 10000 μM (high) Mg2+. Following 7-d treatment, elevated CO2 increased the shoot growth and chlorophyll content under both low and normal Mg supply, whereas root growth was improved exclusively under normal Mg nutrition. Notably, the effect of elevated CO2 on mineral homeostasis in both shoots and roots was less than that of Mg supply. Irrespective of CO2 treatment, high Mg increased leaf number but decreased root growth and absorption of P, K, Ca, Fe and Mn whereas low Mg increased the concentration of P, K, Ca and Fe in leaves. Elevated CO2 decreased the expression of genes related to cadmium response, cell redox homeostasis and lipid localization, but enhanced photosynthesis, signal transduction, protein phosphorylation, NBS-LRR disease resistance proteins and subsequently programmed cell death in low-Mg shoots. By comparison, elevated CO2 enhanced the response of lipid localization (mainly LTP transfer protein/protease inhibitor), endomembrane system, heme binding and cell wall modification in high-Mg roots. Some of these transcriptomic results are substantially in accordance with our physiological and/or biochemical analysis. Conclusions: Contrasting changes were found between roots and shoots with the shoot transcriptome being more severely affected by low Mg while the root transcriptome more affected by high Mg. Elevated CO2 had a greater effect on transcript response in low Mg-fed shoots as well as in high Mg-fed roots. The present findings broaden our current understanding on the interactive effect of elevated CO2 and Mg levels in the Arabidopsis, which may help to design the novel metabolic engineering strategies to cope with Mg deficiency/excess in crops under elevated CO2.
Project description:To identify genes of the guard cell transkriptome of Arabidopsis thaliana enriched guard cell samples were compared with total leaf tissue. Genes of the abscisic acid and humidity response of Arabidopsis thaliana guard cells were identified by treatment with ABA-Spray and low humidity. Ost1-2 and slac1-3 mutants were compared to their wildtype.
Project description:This data set corresponds to the analysis of genome expression, realized by RNA-seq, in response to an elevation of atmospheric CO2 concentration in root and shoot of Arabidopsis thaliana.
Project description:This study aims to identify genes which help to understand similar underlying mechanism in the response to shade and wounding in Arabidopsis thaliana plants.