Project description:Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms. This SuperSeries is composed of the following subset Series: GSE20168: Transcriptional analysis of prefrontal area 9 in Parkinson's disease GSE20291: Transcriptional analysis of putamen in Parkinson's disease GSE20292: Transcriptional analysis of whole substantia nigra in Parkinson's disease Refer to individual Series
Project description:Isolation of bacteria in infected brains in patients with Parkinson's disease. Here we used next generation sequencing of 16S ribosomal RNA gene PCR amplicons (NGS 16S amplicon analysis).
Project description:Isolation of bacteria in infected brains in patients with Parkinson's disease. Here we used next generation sequencing of 16S ribosomal RNA gene PCR amplicons (NGS 16S amplicon analysis).
Project description:Genetic mutations on leucine-rich repeat kinase 2 (LRRK2) have been associated with an increased risk of Parkinson's disease. The Gly2019Ser (G2019S) mutation on LRRK2 gene is a relatively common cause of familial Parkinson's disease in Caucasian population. In this study, we generated human induced pluripotent stem cell (iPSC) lines from LRRK2 (G2019S) bearing patient fibroblasts by cell reprogramming. We performed global gene expression profiling of LRRK2 (G2019S) heterozygous and homozygous patient iPSC lines, and the corresponding fibroblast lines they originated from. An age-matched wildtype human fibroblast line and H1 human embryonic stem cell (ESC) line were used as controls.
Project description:In this study we identify the gene expression changes that occur in the brain-localized immune cells in a mouse model of Parkinson's Disease. A mouse model of Parkinson's Disease was created as previously described by stereotacticaly injecting an AAV-expressing the human A53T_mutated form of a-Synuclein into the Substantia Nigra of adult mice, while control mice were injected with empty vector (EV). These mice exhibit neurodegeneration in the Substantia Nigra and Parkinson-like behaviour phenotypes. Sixteen weeks after the injection, the Substantia Nigra and Srtiatum were micro-dissected and a Percoll gradient was used to enrich for the immune cells present in these tissues. The immune cells were also isolated from the Substantia Nigra and Striatum of same-age WT uninjected mice (WT). RNA was isolated from these cells and single-end 75nt high throughput sequencing were performed on libraries prepared from the RNA. We identified over 400 genes that were differentially expressed between control and Parkinson's mice with a log2 fold-change > |0.75|. These genes were enriched for terms related to immune activation such as: cytokine processing, leukocyte activation, and antigen presentation. The genes associated with these GO terms tended to be up-regulated in the Parkinson's mice suggesting that brain-localized immune cells are more activated in Parkinson's disease.
Project description:Understanding novel mechanism bacteria ustilize in the clinics to become resistant to antibiotics is critical. The study aims to identify genes associated with Vancomycin resistance. Clinical isolates from a single patient with increasing resistance to vancomycin were grown in the presence and absence of vancomycin.Staphylococcus aureus strain 2275 is the reference for this series. S. aureus isolates from a single patient were grown in the presence and absence of vancomycin over a 2 hour time course. RNA samples were extracted at 30, 60 90 and 120 minutes post exposure to antibiotic. Samples were hybridized on aminosilane coated slides with 70-mer oligos comparing mock treated and treated cells to the first strain isolated in the lineage. Differnetial gene expression patterns were determined.