Project description:The success of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) as pathogens is due to a combination of antibiotic resistance with high virulence. However, evolution of the exceptional virulence potential of CA-MRSA is not understood. Our previous study indicated that differential gene expression contributes substantially to this process. Thus, we here investigated the role of the pivotal virulence gene regulatory system agr in the most prevalent CA-MRSA strain USA300. Using a mouse subcutaneous infection model, we show that agr is essential for the development of CA-MRSA skin infections, the most frequent manifestation of disease caused by CA-MRSA. Furthermore, genome-wide analysis of gene expression revealed significant differences in agr-dependent virulence gene regulation between CA-MRSA, HA-MRSA, and laboratory strains. Our findings demonstrate that agr functionality is critical for CA-MRSA disease and indicate that an adaptation of the agr regulon to optimize expression of a broad set of virulence determinants may have contributed to the evolution of exceptionally pronounced virulence of CA-MRSA strains. Keywords: wild type vs mutant Wild type vs mutant agr strains.
Project description:The success of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) as pathogens is due to a combination of antibiotic resistance with high virulence. However, evolution of the exceptional virulence potential of CA-MRSA is not understood. Our previous study indicated that differential gene expression contributes substantially to this process. Thus, we here investigated the role of the pivotal virulence gene regulatory system agr in the most prevalent CA-MRSA strain USA300. Using a mouse subcutaneous infection model, we show that agr is essential for the development of CA-MRSA skin infections, the most frequent manifestation of disease caused by CA-MRSA. Furthermore, genome-wide analysis of gene expression revealed significant differences in agr-dependent virulence gene regulation between CA-MRSA, HA-MRSA, and laboratory strains. Our findings demonstrate that agr functionality is critical for CA-MRSA disease and indicate that an adaptation of the agr regulon to optimize expression of a broad set of virulence determinants may have contributed to the evolution of exceptionally pronounced virulence of CA-MRSA strains. Keywords: wild type vs mutant
Project description:The Staphylococcus aureus accessory gene regulator (agr) is a prototype quorum-sensing system in Gram-positive bacteria and a paradigmatic example of gene regulation by a small regulatory RNA, RNAIII. Using genome-wide transcriptional profiling in the community-associated methicillin-resistant (CA-MRSA) strain MW2, we demonstrate here that in contrast to the current model of target gene regulation by agr, a large subset of agr-regulated genes is controlled independently of RNAIII. This group comprised predominantly metabolism genes, whereas virulence factors were mostly controlled by RNAIII. Remarkably, the phenol-soluble modulin (PSM) leukocidin genes were the only virulence determinants under RNAIII-independent control, emphasizing their exceptional role in S. aureus physiology and pathogenesis. Of note, PSM promoters bound the AgrA response regulator protein, previously believed to interact exclusively with agr promoters, explaining the exceptionally strict control of PSMs by agr. Our results suggest that virulence factor control is a secondary acquisition of the agr regulon, which evolved by development of RNAIII around the mRNA of the PSM d-toxin, exemplifying how gene control via a small regulatory RNA may be linked to a pre-established regulatory circuit. In addition to elucidating agr control in CA-MRSA, which revealed features potentially crucial for CA-MRSA pathogenesis, our study establishes a novel two-level model of cell-density dependent gene regulation in S. aureus and gives important insight into the connection of metabolism and virulence control in this leading opportunistic pathogen. Keywords: Wild type control vs mutant Wild type in triplicate is compared to mutant in triplicate totalling 27 samples