Project description:The black-footed ferret (Mustela nigripes) is a star example of the efforts of conservation programs in bringing endangered species back from the brink of extinction. As one of the world’s most endangered mammals, the vast majority of black-footed ferrets living in the wild today are the offspring of a founding captive population. The success of this ongoing breeding program, however, is threatened by inbreeding depression and the observed decline in pregnancy rates since its founding. As the wild and modern captive populations share a genetic history, the greatest difference between the two groups is the captive environment of the breeding program. In this study, we used RNA sequencing and proteomics for the first time in black-footed ferrets to explore whether the diet of wild ferrets versus captive diet variants could explain the differences in fertility and sperm characteristics observed between each population. We find that changes in both the transcriptional and proteomic profile of black-footed ferret ejaculate are strongly associated with differences in fertility, especially in pathways associated with innate immunity and metabolism; that transcriptional changes are further exacerbated by diet. Overall, our results support the hypothesis of ongoing environmental-dependent inbreeding depression in the black-footed ferret, with a need to re-evaluate dietary and environmental parameters of the conservation program; and also illustrates the value of multi-level genomics for conservation management programs.
Project description:The giant panda (Ailuropoda melanoleuca) stands as a flagship and umbrella species, symbolizing global biodiversity. While traditional assisted reproductive technology faces constraints in safeguarding the genetic diversity of giant pandas and bolstering the population size of giant pandas, induced pluripotent stem cells (iPSCs) known for their capacity to differentiate into diverse cells types, including germ cells, present a transformative potential for conservation of endangered animals. In our study, we isolated primary fibroblast cells from an individual giant panda and successfully generated giant panda induced pluripotent stem cells (GPiPSCs) through a non-integrating episomal vectors reprogramming method. Characterization of these GPiPSCs revealed their state of primed pluripotency and demonstrated their potential for differentiation. Furthermore, we innovatively formulated a species-specific chemically defined FACL medium and unraveled the intricate signaling pathway networks responsible for maintaining the pluripotency and fostering cell proliferation of GPiPSCs. This study provides key insights into rare species iPSCs, offering materials for panda characteristics research and laying the groundwork for in vitro giant panda gamete generation, potentially aiding endangered species conservation.
2024-09-25 | GSE250292 | GEO
Project description:Conservation genetic study of endangered tree species Hopea hainanensis on Hainan Island
Project description:Induced pluripotent stem cells (iPSCs) can provide biological resource for functional and conservation research for various species. However, the understanding of species variations of mammalian iPSCs is still limited. Here, we report the first generation of iPSCs from the endangered species Grevy's zebra (Equus grevyi; gz-iPSCs). We reprogram primary fibroblasts with human reprogramming transcription factors, OCT3/4, SOX2, KLF4, and c-MYC, with the retroviral method and confirmed the pluripotency and differentiation potential. In light of RNA sequencing analysis, generated gz-iPSCs robustly express genes associated with pluripotency and reprogramming processes, including epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions (EMT-MET). Comparative transcriptomics with other species reveals patterns of gene expressions among mammalian PSCs and detects evolutionary conservation of pluripotency-associated genes and plausible importance of translation process. This work will aid in providing biological resource for this endangered species and enables new insight into the evolution of the mammalian PSCs.
Project description:The Tasmanian devil, a marsupial carnivore, is endangered due to the emergence of a clonally transmissible cancer known as Devil Facial Tumor Disease (DFTD). This fatal cancer is clonally derived and is an allograft transmitted between devils by biting. We performed a large-scale genetic analysis of DFTD with microsatellite genotyping, mitochondrial genome analysis, as well as deep sequencing of the DFTD transcriptome and miRNAs. These studies confirm that DFTD is a monophyletic clonally transmissible tumor, and suggest that the disease is of Schwann cell origin. On the basis of these results we have generated a diagnostic marker for DFTD, and identify a suite of genes of relevance to DFTD pathology and transmission. We provide a genomic dataset for the Tasmanian devil, which is applicable to cancer diagnosis, disease evolution and conservation biology. This submission contains only small RNA sequence data from this study.
Project description:The Tasmanian devil, a marsupial carnivore, is endangered due to the emergence of a clonally transmissible cancer known as Devil Facial Tumor Disease (DFTD). This fatal cancer is clonally derived and is an allograft transmitted between devils by biting. We performed a large-scale genetic analysis of DFTD with microsatellite genotyping, mitochondrial genome analysis, as well as deep sequencing of the DFTD transcriptome and miRNAs. These studies confirm that DFTD is a monophyletic clonally transmissible tumor, and suggest that the disease is of Schwann cell origin. On the basis of these results we have generated a diagnostic marker for DFTD, and identify a suite of genes of relevance to DFTD pathology and transmission. We provide a genomic dataset for the Tasmanian devil, which is applicable to cancer diagnosis, disease evolution and conservation biology. This submission contains only small RNA sequence data from this study. Small RNA (18 - 24 nt) sequences from 15 Tasmanian devil (Sarcophilus harrisii) tissue samples
Project description:Orangutans are an endangered species whose natural habitats are restricted to the Southeast Asian islands of Borneo and Sumatra. For potential species conservation and functional genomics studies, we derived induced pluripotent stem cells (iPSCs) from cryopreserved skin fibroblasts obtained from captive orangutans. We report the gene expression profiles of iPSCs and skin fibroblasts derived from orangtuans.