Project description:Transcripts of the gill epithelium from three different stocks of Atlantic salmon (Salmo salar) migrating from freshwater river to lake (Saimaa stock, SS), brackish water (Neva stock, NS) or seawater (Teno stock, TS) were compared at three successive developmental stages (parr, smolt and postsmolt) using the 16K GRASP cDNA microarray platform.
Project description:Ribosome small subunit (SSU) is assembled by the SSU processome which contains approximately 70 non-ribosomal protein factors. The biochemical mechanism for the SSU processome in 18S rRNA processing and maturation has been extensively studied, however, how the SSU processome components enter to the nucleolus has not been systematically investigated. Here we checked the nucleolar localization of 50 human SSU processome components and find that UTP3 and other 24 proteins enter to the nucleolus autonomously. For the remaining 25 proteins we find that UTP3/SAS10 assists the nucleolar localization of five proteins, namely MPP10, UTP25, EMG1 and two UTP-B components UTP12 and UTP13, and this ferry function of UTP3 is conserved in zebrafish. We also find that knockdown of human UTP3 impairs the cleavage at A0-site while loss-of-function of either utp3/sas10 or utp13/tbl3 in zebrafish causes an accumulation of the processed products containing the 5′ETS, supporting the crucial role of UTP3 in mediating the 5′ETS processing and degradation. Moreover, UTP3 directly interacts with and delivers EXOSC10 into the nucleolus, suggesting that UTP3 may play a direct role in recruiting the nuclear exosome to the SSU processome for degradation of the processed 5′ETS. These findings lay the ground for studying the mechanism of cytoplasm-to-nucleolus trafficking of the SSU processome components and the multifaceted roles of UTP3 during pre-rRNA processing.
Project description:The SSU Processome (sometimes referred to as 90S) is an early stable intermediate in the small ribosomal subunit biogenesis pathway of eukaryotes. Progression of the SSU Processome to a pre-40S particle requires a large-scale compaction of the RNA and release of many biogenesis factors. The U3 snoRNA is a primary component of the SSU Processome and hybridizes to the rRNA at multiple locations to organize the structure of the SSU Processome. Thus, release of U3 is prerequisite for the transition to pre-40S. Our lab proposed that the RNA helicase Dhr1 plays a crucial role in the transition by unwinding U3 and that this activity is controlled by the SSU Processome protein Utp14. How Utp14 times the activation of Dhr1 is an open question. Despite being highly conserved, Utp14 contains no recognizable domains, and how Utp14 interacts with the SSU Processome is not well characterized. Here, we used UV crosslinking and analysis of cDNA (CRAC) and yeast two-hybrid interaction to characterize how Utp14 interacts with the pre-ribosome. Moreover, proteomic analysis of SSU particles lacking Utp14 revealed that the presence of Utp14 is needed for efficient recruitment of the RNA exosome. Our analysis positions Utp14 to be uniquely poised to communicate the status of assembly of the SSU Processome to Dhr1 and possibly to the exosome as well.