Project description:Changes in the human gastrointestinal microbiome are associated with several diseases. To infer causality, experiments in representative models are essential, but widely used animal models exhibit limitations. Here we present a modular, microfluidics-based model (HuMiX, human–microbial crosstalk), which allows co-culture of human and microbial cells under conditions representative of the gastrointestinal human–microbe interface. We demonstrate the ability of HuMiX to recapitulate in vivo transcriptional, metabolic and immunological responses in human intestinal epithelial cells following their co-culture with the commensal Lactobacillus rhamnosus GG (LGG) grown under anaerobic conditions. In addition, we show that the co-culture of human epithelial cells with the obligate anaerobe Bacteroides caccae and LGG results in a transcriptional response, which is distinct from that of a co-culture solely comprising LGG. HuMiX facilitates investigations of host–microbe molecular interactions and provides insights into a range of fundamental research questions linking the gastrointestinal microbiome to human health and disease.
Project description:Helicobacter cinaedi is an emerging bacterial pathogen of immunosuppressed individuals. The species is traditionally thought to require an H2-enhanced microaerobic atmosphere for growth, although it can proliferate under aerobic conditions when co-cultured with epithelial monolayers or supplemented with certain metabolites (notably, L-lactate). The goal of this experiment was to assess the global transcription changes that occur in the H. cinaedi type strain (ATCC BAA-847) under various media and atmospheric conditions. These include bacterial monoculture, as well as co-culture with Caco-2 intestinal epithelial cells. In total, Illumina mRNA-seq (stranded, paired-end) was performed on H. cinaedi grown under 9 in vitro culture conditions (4-5 biologic replicates per condition).
Project description:Comparing two intestinal porcine epithelial cell lines (IPECs): global expression patterns to characterise a in vitro model of intestinal physiology