Project description:The objective was to identify functional genes encoded by Fungi and fungal-like organisms to assess putative ecological roles Using the GeoChip microarray, we detected fungal genes involved in the complete assimilation of nitrate and the degradation of lignin, as well as evidence for Partitiviridae (a mycovirus) that likely regulates fungal populations in the marine environment. These results demonstrate the potential for fungi to degrade terrigenously-sourced molecules, such as permafrost and compete with algae for nitrate during blooms. Ultimately, these data suggest that marine fungi could be as important in oceanic ecosystems as they are in freshwater environments.
Project description:The draft genome of L. sativa (lettuce) cv. Tizian was sequenced in two Illumina sequencing runs, mate pair and shotgun. This entry contains the RAW sequencing data.
Project description:Background Trombidid mites have a unique lifecycle in which only the larval stage is ectoparasitic. In the superfamily Trombiculoidea (“chiggers”), the larvae feed preferentially on vertebrates, including humans. Species in the genus Leptotrombidium are vectors of a potentially fatal bacterial infection, scrub typhus, which affects 1 million people annually. Moreover, chiggers can cause pruritic dermatitis (trombiculiasis) in humans and domesticated animals. In the Trombidioidea (velvet mites), the larvae feed on other arthropods and are potential biological control agents for agricultural pests. Here, we present the first trombidid mites genomes, obtained both for a chigger, Leptotrombidium deliense, and for a velvet mite, Dinothrombium tinctorium. Results Sequencing was performed on the Illumina MiSeq platform. A 180 Mb draft assembly for D. tinctorium was generated from two paired-end and one mate-pair library using a single adult specimen. For L. deliense, a lower-coverage draft assembly (117 Mb) was obtained using pooled, engorged larvae with a single paired-end library. Remarkably, both genomes exhibited evidence of ancient lateral gene transfer from soil-derived bacteria or fungi. The transferred genes confer functions that are rare in animals, including terpene and carotenoid synthesis. Thirty-seven allergenic protein families were predicted in the L. deliense genome, of which nine were unique. Preliminary proteomic analyses identified several of these putative allergens in larvae. Conclusions Trombidid mite genomes appear to be more dynamic than those of other acariform mites. A priority for future research is to determine the biological function of terpene synthesis in this taxon and its potential for exploitation in disease control. Project was jointly supervised by Stuart Armstrong and Ben Makepeace.
Project description:We set out to investigate the genetic adaptions of the known marine fungus Paradendryphiella salina CBS112865 to the degradation of brown macro-algae, expecting to find a repertoire of carbohydrate active enzymes highly specialized to the degradation of algal polysaccharides. We performed whole genome, transcriptome sequencing and shotgun proteomic analysis of the secretome of P. salina growing on three species of brown algae and under carbon starvation. The genome comparison to close terrestrial fungal relatives, revealed P. salina to have a similar, but reduced carbohydrate active enzyme (CAZyme) profile, except for the presence of three putative alginate lyase 7 genes, most likely acquired via ancient horizontal gene transfer event from a marine bacterium and a polysaccharide lyase 8 gene with similarity to ascomycete chondroitin AC lyases. The proteomic analysis revealed both PL7 and PL8 enzymes to be highly abundant in the algal fermentations together with enzymes necessary for degradation of laminarin, cellulose, lipids and peptides. Our findings indicate that the base CAZyme repertoire of saprobic and plant pathogenic ascomycetes with the necessary addition of alginate lyases provide the fungi with the enzymatic capabilities to thrive on brown algae polysaccharides and even cope with the algal defense mechanisms.