Project description:A total of 49.88 Gb high quality reads of 6 samples (n=3) were obtained. The result of sample distance indicated that the cecal gene expression profiles of rats fed with diets composed of casein and chicken protein were clearly separated into two clusters. The variation of samples in casein protein fed group was higher than that in chicken protein fed group. There were 2524 differential expressed genes between the two groups, of which 871 genes were up regulated in chicken protein diet group compared with casein diet group.
Project description:Gut microbiota and their metabolites influence host gene expression and physiological status through diverse mechanisms. Here we investigate how gut microbiota and their metabolites impact host's mRNA m6A epitranscriptome in various antibiotic-induced microbiota dysbiosis models. With multi-omics analysis, we find that the imbalance of gut microbiota can rewire host mRNA m6A epitranscriptomic profiles in brain, liver and intestine. We further explore the underlying mechanisms regulating host mRNA m6A methylome by depleting the microbiota with ampicillin. Metabolomic profiling shows that cholic acids are the main down-regulated metabolites with Firmicutes as the most significantly reduced genus in ampicillin-treated mice comparing to untreated mice. Fecal microbiota transplantations in germ-free mice and metabolites supplementations in cells verify that cholic acids are associated with host mRNA m6A epitranscriptomic rewiring. Collectively, this study employs an integrative multi-omics analysis to demonstrate the impact of gut microbiota dysbiosis on host mRNA m6A epitranscriptomic landscape via cholic acid metabolism.
Project description:Gut microbiota and their metabolites influence host gene expression and physiological status through diverse mechanisms. Here we investigate how gut microbiota and their metabolites impact host′s mRNA m6A epitranscriptome in various antibiotic-induced microbiota dysbiosis models. With multi-omics analysis, we find that the imbalance of gut microbiota can rewire host mRNA m6A epitranscriptomic profiles in brain, liver and intestine. We further explore the underlying mechanisms regulating host mRNA m6A methylome by depleting the microbiota with ampicillin. Metabolomic profiling shows that cholic acids are the main down-regulated metabolites with Firmicutes as the most significantly reduced genus in ampicillin-treated mice comparing to untreated mice. Fecal microbiota transplantations in germ-free mice and metabolites supplementations in cells verify that cholic acids are associated with host mRNA m6A epitranscriptomic rewiring. Collectively, this study employs an integrative multi-omics analysis to demonstrate the impact of gut microbiota dysbiosis on host mRNA m6A epitranscriptomic landscape via cholic acid metabolism.
Project description:This study in rats was designed to investigate whether whole rhye (WR) can influence the metabolism of n-3 and n-6 long-chain fatty acids (LCFA) and gut microbiota composition. For 12 weeks, rats were fed a diet containing either 50% WR or 50% refined rye (RR). Total bacterial DNA was extracted from fecal and cecal samples (n=5 per group). 16S PCR amplification was performed to assess the microbial diversity at the family level using the HuGChip. Amplified DNA was purified and labelled with either Cy3 or Cy5 dye and hybridized on the microarray. A 15 chip study was realized, each corresponding to hybridization with 250ng of labelled 16S rRNA gene amplicons from either mice fecal and cecal samples. Each probe (4441) was synthetized in three replicates.
Project description:Chronic acid suppression by proton pump inhibitor (PPI) has been hypothesized to alter the gut microbiota via a change in intestinal pH. To evaluate the changes in gut microbiota composition by long-term PPI treatment. Twenty-four week old F344 rats were fed with (n = 5) or without (n = 6) lansoprazole (PPI) for 50 weeks. Then, profiles of luminal microbiota in the terminal ileum were analyzed. Pyrosequencing for 16S rRNA gene was performed by genome sequencer FLX (454 Life Sciences/Roche) and analyzed by metagenomic bioinformatics.
Project description:This study in rats was designed to investigate whether whole rhye (WR) can influence the metabolism of n-3 and n-6 long-chain fatty acids (LCFA) and gut microbiota composition. For 12 weeks, rats were fed a diet containing either 50% WR or 50% refined rye (RR). Total bacterial DNA was extracted from fecal and cecal samples (n=5 per group). 16S PCR amplification was performed to assess the microbial diversity at the family level using the HuGChip. Amplified DNA was purified and labelled with either Cy3 or Cy5 dye and hybridized on the microarray.
Project description:Rofecoxib, a cyclooxygenase-2 enzyme inhibitor, was withdrawn from the market after revealing its proarrhythmic and prothrombotic effects in phase IV clinical trials. Currently, in the preclinical phase of drug development, the cardiac side effects are tested on healthy tissues or small animals. Metabolic comorbidities, like hypercholesterolemia, may interfere with the cardioprotective or carditoxic effects of specific drugs. Here, we aimed to develop a test platform to investigate the cardiac effects of drugs in models with metabolic comorbidities. We fed adult, male Wistar rats for 12 weeks of high-fat diet (2% cholesterol + 0.25% cholic acid-enriched chow) or standard chow and treated high-fat diet-fed rats with 5.12 mg/kg rofecoxib for the last 4 weeks of the diet. Then, we performed microRNA sequencing from the left ventricles of the animals, to investigate the gene expression changes following high-fat diet and rofecoxib treatments.