Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:Human Peptidoglycan Recognition Proteins (PGRPs) kill bacteria, likely by over-activating stress responses in bacteria. To gain insight into the mechanism of PGRP killing of Escherichia coli and bacterial defense against PGRP killing, gene expression in E. coli treated with a control protein (bovine serum albumin, BSA), human recombinant PGRP (PGLYRP4), gentamicin (aminoglycoside antibiotic), and CCCP (membrane potential decoupler) were compared. Each treatment induced unique and somewhat overlapping pattern of gene expression. PGRP highly increased expression of genes for oxidative and disulfide stress, detoxification and efflux of Cu, As, and Zn, repair of damaged proteins and DNA, methionine and histidine synthesis, energy generation, and Fe-S clusters repair. PGRP also caused marked decrease in the expression of genes for Fe uptake and motility. Gene expression microarray in E. coli exposed to a human bactericidal innate immunity protein, PGRP, showed induction of oxidative stress response and defense genes, with different expression pattern than E. coli exposed to an aminoglycoside antibiotic and a membrane potential decoupler.
Project description:Mastitis is a common disease that hinders the development of dairy industry and animal husbandry. It leads to the abuse of antibiotics, the emergence of super drug-resistant bacteria, and poses a great threat to human food health and safety. Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) are the most common pathogens of mastitis in dairy cows and usually cause subclinical or clinical mastitis. CircRNAs and N6-methyladenosine (m6A) play important roles in immunological diseases. However, the mechanisms by which m6A modifies circRNA in bovine mammary epithelial cells remain poorly understood. The aim of our study was to investigate m6A-modified circRNAs in bovine mammary epithelial cells (MAC-T cells) injured by S. aureus and E. coli. The profile of m6A-modified circRNA showed a total of 1599 m6A peaks within 1035 circRNAs in the control group, 35 peaks within 32 circRNAs in the S. aureus group, and 1016 peaks within 728 circRNAs in the E. coli group. Compared with the control group, 67 peaks within 63 circRNAs were significantly different in the S. aureus group, and 192 peaks within 137 circRNAs were significantly different in the E. coli group. Furthermore, we found the source genes of these differentially m6A-modified circRNAs in the S. aureus and E. coli groups with similar functions according to GO and KEGG analyses, which were mainly associated with cells injury, such as inflammation, apoptosis, and autophagy. CircRNA-miRNA-mRNA interaction networks predicted the potential circRNA regulation mechanism in S. aureus- and E. coli-induced cell injury. We found that the mRNAs in the networks, such as BCL2, MIF and TNFAIP8L2, greatly participated in the MAPK, WNT, and inflammation pathways. This is the first report on m6A-modified circRNA regulation of cells under S. aureus and E. coli treatment, and sheds new light on potential mechanisms and targets from the perspective of epigenetic modification in mastitis and other inflammatory diseases.
Project description:Transcriptional profiling of Escherichia coli in the biofilm mode of growth. A comparison of the transcriptional profiles of the biofilm interior and perimeter.
Project description:Comparison of Escherichia coli proteomics of different DNA sequence binding proteins and identification of heterologous expressed protein
Project description:Escherichia coli O157:H7 strains have been classified into different genotypes based on the presence of specific shiga toxin-encoding bacteriophage insertion sites. Genotypes that are predominant in clinical isolates are named clinical genotypes and those that are isolated mostly from bovine sources are bovine-biased genotypes. To determine whether inherent differences in gene expression could possibly explain the variation in infectivity of these genotypes, we compared the expression patterns of O157:H7 strains isolated from cattle, which belonged to either clinical genotype 1 or bovine-biased genotype 5. Important virulence factors of O157, including locus of enterocyte effacement, enterohemolysin, and pO157 plasmid encoded genes, showed increased expression in clinical genotype. Genes essential for acid resistance such as gadA, gadB, and gadC and other stress fitness-associated genes were up-regulated in the bovine-biased genotype 5. Overall, these results suggest that clinical genotype 1 strains more commonly cause human illness because of an enhanced ability to express O157 virulence factors known to be important for disease pathogenesis. By contrast, strains of the bovine-biased genotype 5 appear to be more resistant to adverse environmental conditions, which enable them to survive well in bovines without causing disease.
Project description:Background: Based on 32 Escherichia coli and Shigella genome sequences, we have developed an E. coli pan-genome microarray. Publicly available genomes were annotated in a consistent manor to define all currently known genes potentially present in the species. The chip design was evaluated by hybridization of DNA from two sequenced E. coli strains, K-12 MG1655 (a commensal) and O157:H7 EDL933 (an enterotoxigenic E. coli). A dual channel and single channel analysis approach was compared for the comparative genomic hybridization experiments. Moreover, the microarray was used to characterize four unsequenced probiotic E. coli strains, currently marketed for beneficial effects on the human gut flora. Results: Based on the genomes included in this study, we were able to group together 2,041 genes that were present in all 32 genomes. Furthermore, we predict that the size of the E. coli core genome will approach ~1,560 essential genes, considerably less than previous estimates. Although any individual E. coli genome contains between 4,000 and 5,000 genes, we identified more than twice as many (11,872) distinct gene groups in the total gene pool (“pan-genome”) examined for microarray design. Benchmarking of the design based on sequenced control strain samples demonstrated a high sensitivity and relatively low false positive rate. Moreover, the array was highly sufficient to investigate the gene content of apathogenic isolates, despite the strong bias towards pathogenic E. coli strains that have been sequenced so far. Our analysis of four probiotic E. coli strains demonstrate that they share a gene pool very similar to the E. coli K-12 strains but also show significant similarity with enteropathogenic strains. Nonetheless, virulence genes were largely absent. Strain-specific genes found in probiotic E. coli but absent in E. coli K12 were most frequently phage-related genes, transposases and other genes related to mobile DNA, and metabolic enzymes or factors that may offer colonization fitness, which together with their asymptomatic nature may explain their nature. Conclusion: This high-density microarray provides an excellent tool for characterizing either DNA content or gene expression from unknown E. coli strains. Keywords: Comparative genomic hybridizations
Project description:Mastitis is a common disease in dairy cows and brings massive losses to the dairy industry. m6A is a type of modification strongly associated with many diseases. However, the role of m6A in mastitis caused by Staphylococcus aureus and Escherichia coli has not been investigated.We used MeRIP-seq technology to sequence the bovine mammary epithelial cells (MAC-T) infected with inactivated S. aureus/E. coli for 24 h.