Project description:Gut microbiota and their metabolites influence host gene expression and physiological status through diverse mechanisms. Here we investigate how gut microbiota and their metabolites impact host's mRNA m6A epitranscriptome in various antibiotic-induced microbiota dysbiosis models. With multi-omics analysis, we find that the imbalance of gut microbiota can rewire host mRNA m6A epitranscriptomic profiles in brain, liver and intestine. We further explore the underlying mechanisms regulating host mRNA m6A methylome by depleting the microbiota with ampicillin. Metabolomic profiling shows that cholic acids are the main down-regulated metabolites with Firmicutes as the most significantly reduced genus in ampicillin-treated mice comparing to untreated mice. Fecal microbiota transplantations in germ-free mice and metabolites supplementations in cells verify that cholic acids are associated with host mRNA m6A epitranscriptomic rewiring. Collectively, this study employs an integrative multi-omics analysis to demonstrate the impact of gut microbiota dysbiosis on host mRNA m6A epitranscriptomic landscape via cholic acid metabolism.
Project description:Gut microbiota and their metabolites influence host gene expression and physiological status through diverse mechanisms. Here we investigate how gut microbiota and their metabolites impact host′s mRNA m6A epitranscriptome in various antibiotic-induced microbiota dysbiosis models. With multi-omics analysis, we find that the imbalance of gut microbiota can rewire host mRNA m6A epitranscriptomic profiles in brain, liver and intestine. We further explore the underlying mechanisms regulating host mRNA m6A methylome by depleting the microbiota with ampicillin. Metabolomic profiling shows that cholic acids are the main down-regulated metabolites with Firmicutes as the most significantly reduced genus in ampicillin-treated mice comparing to untreated mice. Fecal microbiota transplantations in germ-free mice and metabolites supplementations in cells verify that cholic acids are associated with host mRNA m6A epitranscriptomic rewiring. Collectively, this study employs an integrative multi-omics analysis to demonstrate the impact of gut microbiota dysbiosis on host mRNA m6A epitranscriptomic landscape via cholic acid metabolism.
2024-04-21 | GSE216620 | GEO
Project description:Recovery of the gut microbiota in ampicillin-treated mice is dependent on the environment
Project description:Gut microbiota and their metabolites influence host gene expression and physiological status through diverse mechanisms. Here we investigate how gut microbiota and their metabolites impact host′s mRNA m6A epitranscriptome in various antibiotic-induced microbiota dysbiosis models. With multi-omics analysis, we find that the imbalance of gut microbiota can rewire host mRNA m6A epitranscriptomic profiles in brain, liver and intestine. We further explore the underlying mechanisms regulating host mRNA m6A methylome by depleting the microbiota with ampicillin. Metabolomic profiling shows that cholic acids are the main down-regulated metabolites with Firmicutes as the most significantly reduced genus in ampicillin-treated mice comparing to untreated mice. Fecal microbiota transplantations in germ-free mice and metabolites supplementations in cells verify that cholic acids are associated with host mRNA m6A epitranscriptomic rewiring. Collectively, this study employs an integrative multi-omics analysis to demonstrate the impact of gut microbiota dysbiosis on host mRNA m6A epitranscriptomic landscape via cholic acid metabolism.
Project description:The larynx is essential for swallowing, breathing, coughing, and voice production, supported by its unique microbial and immunological environment. Our previous research highlighted the role of resident laryngeal microbiota in shaping local immune responses. With growing interest in the gut-lung axis—the bidirectional communication between gut and respiratory immunity—the potential influence of gut microbiota on laryngeal immunity warrants exploration. We hypothesized that a gut-larynx axis may exist, where both resident laryngeal and gut microbiota contribute to immune modulation in the larynx. To investigate this, we treated conventionally raised, wild-type C57BL/6J mice with an oral antibiotic regimen known to disrupt gut microbiota, comparing them to untreated controls. Following treatment, the gut microbiota was significantly disrupted, while the laryngeal microbiota remained largely unchanged. However, antibiotic-treated mice exhibited marked changes in epithelial and immune cell proportions, as well as fibroblasts. Differential gene expression across cell types highlighted pathways related to epithelial barrier integrity, immune signaling, and bacterial response. Additionally, gut dysbiosis affected gene regulatory networks, with the activity of regulons Etv4(+), Irf3(+), Hltf(+), Mga(+), and Nfil3(+) showing significant changes. Notably, cell-cell communication was also altered, especially in immune-epithelial interactions, with integrin-mediated signaling emerging as a key ligand-receptor pathway in these intercellular communications. These findings suggest that gut and laryngeal microbiota may work synergistically to modulate immune responses in the larynx, underscoring the importance of considering gut-larynx interactions in studies of respiratory immunity.
Project description:We have previously demonstrated that the gut microbiota can play a role in the pathogenesis of conditions associated with exposure to environmental pollutants. It is well accepted that diets high in fermentable fibers such as inulin can beneficially modulate the gut microbiota and lessen the severity of pro-inflammatory diseases. Therefore, we aimed to test the hypothesis that hyperlipidemic mice fed a diet enriched with inulin would be protected from the pro-inflammatory toxic effects of PCB 126.
Project description:Epithelial Ovarian Cancer (EOC) is the leading cause of gynecologic cancer death. Despite many patients achieving remission with first-line therapy, up to 80% of patients will recur and require additional treatment. Retrospective clinical analysis of OC patients indicates antibiotic use during chemotherapy treatment is associated with poor overall survival. We assessed whether antibiotic (ABX) therapy would impact growth of EOC and sensitivity to cisplatin in murine models. Immune competent or compromised mice were given control or ABX containing water (metronidazole, ampicillin, vancomycin, and neomycin) before being intraperitoneally injected with murine EOC cells. Stool was collected to confirm microbiome disruption and tumors were monitored, and cisplatin therapy was administered weekly until endpoint. EOC tumor-bearing mice demonstrate accelerated tumor growth and resistance to cisplatin therapy in ABX treated compared with nonABX treatment. Stool analysis indicated most gut microbial species were disrupted by ABX treatment except for ABX resistant bacteria. To test for role of the gut microbiome, cecal microbiome transplants (CMTs) of microbiota derived from ABX or nonABX treated mice were used to recolonize the microbiome of ABX treated mice. nonABX cecal microbiome was sufficient to ameliorate the chemoresistance and survival of ABX treated mice indicative of a gut derived tumor suppressor. Mechanistically, tumors from ABX treated compared to nonABX treated mice contained a high frequency of cancer stem cells that were augmented by cisplatin. These studies indicate an intact microbiome provides a gut derived tumor suppressor and maintains chemosensitivity that is disrupted by ABX treatment.
Project description:Recent evidence suggests an important role of the gut microbiome in early life on immune cell entraining. Using two independent transgenic (Tg) lines of Alzheimer’s disease, we have demonstrated that life-long antibiotic (ABX)-perturbation of the gut microbiome is associated with reduced amyloid beta (Ab) plaque pathology and microglial phenotypes in male mice. Furthermore, fecal microbiota transfer (FMT) from age-matched APPPS1-21 Tg mice into long-term ABX-treated male APPPS1-21 mice partially restored amyloidosis and microgliosis, thus establishing causality. in the current studies, we planned to investigate the transcriptome profiles in APPPS1-21 mice treated with short-term abx (PND14-21) compared with vehicle treated groups in genotype-, sex- and time -dependent manner. Most importantly, we also investigated if fecal microbiota transplants from age-matched Tg male mice into short-term abx (PND14-21)-treated male mice restores brain transcriptomes to that of obsreved in vehicle-treated male mice at 9 weeks of age.