Project description:Investigation of whole genome gene expression level changes in a Gluconacetobacter xylinus NBRC 3288 delta-fnrG mutant, compared to the wild-type strain.
Project description:Purpose:The goals of this study are to clarify the B. subtilis NBRC 16449 response to soybeans. Methods: B. subtilis NBRC 16449 cells were aerobically cultured in liquid LB, LB solidified with agar, or on surface of boiled soybeans to logarithmic growth phase. Total RNAs were extracted from bacterial cells by Hot-Phenol method. Samples for RNA-seq were prepared according to Illmina protocol available from the manufacture. The sequence reads that passed quality filters were analyzed at the transcript isoform level with bowtie v0.11.2. Results: Using an optimized data analysis workflow, we mapped around 15 million sequence reads per sample to the whole genome of B. subtilis BEST195 and identified 4271 transcripts in B. subtilis NBRC 16449 with Bowtie aligner. Read count per genome was extracted from known gene annotations with HTSeq program. Compared the transcriptomes of B. subtilis NBRC 16449 grown on LB solidified with agar to that grown on surface of boiled soybeans, about 5% of genes showed the different expression levels.
Project description:Transcriptional profiling of Oryza sativa japonica Nipponbare roots after 14 days post infection with Xanthomonas oryzae pv. oryzae strain PXO99 , the goal is to understand the transcriptomic response of rice roots to colonization by bacterial pathogen
Project description:OsEDS1 is a key regulator of SA-mediated immunity in plants. The OsEDS1 knockout mutant (Oseds1) was characterized and shown to have increased susceptibility to Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), suggesting the positive role of OsEDS1 in regulating rice disease resistance. To identify differentially regulated downstream of Oseds1, we performed transcriptome deep sequencing (RNA-seq) of wild type (ZH11) and Oseds1 inoculated with Xanthomonas oryzae pv. Oryzae (PXO99A).
Project description:The Aspergillus oryzae, an important filamentous fungus used in food fermentation and enzyme industry, has been revealed to own prominent features in its genomic compositions by genome sequencing and various other tools. However, the functional complexity of the A. oryzae transcriptome has not yet been fully elucidated. Here, we applied direct high-throughput paired-end RNA sequencing (RNA-Seq) to the transcriptome of A. oryzae under four different culture conditions and confirmed most of the annotated genes. Moreover, with high resolution and sensitivity afforded by RNA-Seq, we were able to identify a substantial number of novel transcripts, new exons, untranslated regions, alternative upstream initiation codons (uATGs) and upstream open reading frames (uORFs), which serves a remarkable insight into the A. oryzae transcriptome. We also were able to assess the alternative mRNA isoforms in A. oryzae and found a large number of genes undergoing alternative splicing. Many genes or pathways that might involve in higher levels of protein production in solid-state culture than in liquid culture were identified by comparing gene expression levels between different cultures. Our analysis indicated that the transcriptome of A. oryzae was much more complex than previously anticipated and the results might provide a blueprint for further study of A. oryzae transcriptome.