Project description:Per- and polyfluoroalkyl substances (PFAS) are a diverse family of industrially significant synthetic chemicals infamous for extreme environmental persistence and global environmental distribution. Many PFAS are bioaccumulative and biologically active mainly due to their tendency to bind with various proteins. These protein interactions may be the most important element in determining the accumulation potential and tissue distribution of individual PFAS. Trophodynamics studies including aquatic food webs present inconsistent evidence for PFAS biomagnification. This study strives to identify whether the observed variability in PFAS bioaccumulation potential among species could correspond with interspecies protein composition differences. Specifically, this work compares the perfluorooctane sulfonate (PFOS) serum protein binding potential and the tissue distribution of ten perfluoroalkyl acids (PFAAs) detected in alewife (Alosa pseudoharengus), deepwater sculpin (Myoxocephalus thompsonii), and lake trout (Salvelinus namaycush) of the Lake Ontario aquatic piscivorous food web. To identify interspecies differences in PFAS-binding serum proteins, fish sera were pre-equilibrated with PFOS, fractionated by serial molecular weight cut-off filter fractionation, followed by liquid chromatography–tandem mass spectrometry analysis of the tryptic protein digests and the PFOS extracts of each fraction. This workflow identified similar serum proteins for all fish species. However, serum albumin was only identified in lake trout, suggesting apolipoproteins are likely the primary PFAA transporters in alewife and deepwater sculpin sera. PFAA tissue distribution analysis provided supporting evidence for interspecies variations in lipid transport and storage, which may also contribute to the varied PFAA accumulation in these species.
2023-03-11 | PXD039145 | Pride
Project description:Spatiotemporal distribution of fish in Erhai Lake
| PRJNA1279765 | ENA
Project description:studies of lipid metabolism on fish liver
Project description:Fish oil, olive oil, and coconut oil dietary supplementation have several cardioprotective benefits, but it is not established if they can protect against air pollution-induced adverse effects. We hypothesized that these dietary supplements would attenuate ozone-induced systemic and pulmonary effects. Male Wistar Kyoto rats were fed either a normal diet, or a diet enriched with fish, olive, or coconut oil starting at 4 weeks of age for 8 weeks. Animals were then exposed to air or ozone (0.8 ppm), 4h/day for 2 consecutive days. The fish oil diet completely abolished phenylephrine-induced vasoconstriction that was increased following ozone exposure in the animals fed all other diets. Only the fish oil diet increased baseline levels of bronchoalveolar lavage fluid (BALF) markers of lung injury and inflammation. Ozone-induced pulmonary injury/inflammation were comparable in rats on normal, coconut oil, and olive oil diets with altered expression of markers in animals fed the fish oil diet. Fish oil, regardless of exposure, led to enlarged, foamy macrophages in the BALF that coincided with decreased mRNA expression of cholesterol transporters, cholesterol receptors, and nuclear receptors in the lung. Serum miRNA profile was assessed using small RNA-sequencing in normal and fish oil groups and demonstrated marked depletion of a variety of miRNAs, several of which were of splenic origin. No ozone-specific changes were noted. Collectively, these data indicate that while fish oil offered protection from ozone-induced aortic vasoconstriction, it increased pulmonary injury/inflammation and impaired lipid transport mechanisms resulting in foamy macrophage accumulation, demonstrating the need to be cognizant of potential off-target pulmonary effects that might offset the overall benefit of this vasoprotective dietary supplement.
Project description:Condition specific zebrafish metabolic models generated using the COBRA MetaboTools framework. The Wang et al., (2021) zebrafish genome-scale metabolic model (GEM) was constrained with experimental data from 5 days post fertilized (dpf) zebrafish to generate a 'base-model'.
In turn this 5 dpf zebrafish base-model was constrained with experimental (transcriptomics and metabolomics) data from 5 dpf zebrafish exposed to the environmental pollutant perfluorooctane sulfonate (PFOS), at three levels - Low (0.06 uM), Medium (0.6 uM), and High (2 uM) PFOS.
The MetaboTools framework was used to construct three condition-sepcific models: Low, Medium, and High PFOS.
Key simulation predictions of effects on the carnitine shuttle and lipid metabolism were confirmed in wild-caught fish and dolphins (stranded animals) sampled from the northern Gulf of Mexico - published in Nolen et al., (2024) https://doi.org/10.1016/j.cbpc.2023.109817
Project description:The effect of different diets (i.e. fish oil based vs vegetable oil based) on liver transcription profiles over the life history stages (freshwater and marine phases) of cultured Atlantic salmon (Salmo salar) were explored. Two groups of fish were raised from first feeding on different lipid containing diets; a) the standard 100% fish oil based diet, the other enriched with a blend of vegetable oils (75%) + fish oil (25%). Liver samples were taken from fish at four time points: two freshwater phase (as parr 36 weeks post hatch (wph); as pre-smolts, 52 wph) and two marine phase ( as post-smolts 55 wph; and as adult fish , 86 wph). A total of 96 cDNA microarray hybridisations - TRAITS / SGP Atlantic salmon 17k feature cDNA microarray - were performed ( 2 diets x 4 time points x 6 biological replicates x 2 -dye swap) using a comon pooled reference contol design.
Project description:To investigate the role of lncRNAs on lipid metabolism, we did RNAseq to find the difference among large yellow croaker fed with fish oil (FO), soybean oil (SO), olive oil (OO), and palm oil (PO) diets
Project description:Atlantic salmon individuals were grown, from fresh water to salt water in tanks on diets with low fish meal (10%) and 1-1.25% total n-3 LC-PUFA levels. Dietary n-3 LC-PUFAs were supplemented by 1) fish oil (FO), 2) Schyzochytrium limacinum biomass (AA). Further, the fish from all treatments were mixed and redistributed in sea cages reared to slaughter (ca. 3kg body weight) on either FO or AA. Transcriptomics analyses in liver and intestinal tissues revealed significant dietary effects on the expression of immune modulating, as well as ion, lipid, protein and xenobiotic metabolism genes.
Project description:Currently, the only sustainable alternatives for dietary fish oil (FO) in aquafeeds are vegetable oils (VO) that are devoid of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA). Entirely new sources of n-3 LC-PUFA such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids through de novo production is a potential solution to fill the gap between supply and demand of these important nutrients. Camelina sativa,was metabolically engineered to produce a seed oil (ECO) with > 20 % EPA and its potential to substitute for FO in Atlantic salmon feeds was tested. Fish were fed one of three experimental diets containing FO, wild-type camelina oil (WCO) or ECO as the sole lipid sources for 7-weeks. Inclusion of ECO did not affect any of the performance parameters studied and enhanced apparent digestibility of individual n-6 and n-3 PUFA compared to dietary WCO. High levels of EPA were maintained in brain, liver and intestine (pyloric caeca), and levels of DPA and DHA were increased in liver and intestine of fish fed ECO compared to fish fed WCO likely due to increased LC-PUFA biosynthesis based on up-regulation of the genes. Fish fed WCO and ECO showed slight lipid accumulation within hepatocytes similar to that with WCO, although not significantly different to fish fed FO. The regulation of a small number of genes could be attributed to the specific effect of ECO (311 features) with metabolism being the most affected category. The EPA oil from transgenic Camelina (ECO) could be used as a substitute for FO, however it is a hybrid oil containing both FO (EPA) and VO (18:2n-6) fatty acid signatures that resulted in similarly mixed metabolic and physiological responses.