Project description:Pancreatic cancer stem cells (CSCs) have been described as CD24+/CD44+/EpCAM+ or CD133+ cells. However, no study has determined the co-expression of all of these markers in pancreatic ductal adenocarcinoma. Similarly to other combinations of CSC markers, CD24+/ CD44+/EpCAM+/CD133+ phenotype might more accurately identify true pancreatic CSCs. Therefore, we performed a detailed co-expression analysis of CD24, CD44, EpCAM, and CD133 in 3 cell lines derived from primary pancreatic ductal adenocarcinomas (PDACs). Gene expression profiling was applied in order to further investigate the observed differences in proportion of cells that co-expressed CSC markers among the cell lines.
Project description:This SuperSeries is composed of the following subset Series: GSE25068: PcG/TrxG profiling of differentially aged adipose-derived mesenchymal stem cells GSE25069: Whole-genome microarray of long-term cultured adipose derived mesenchymal stem cells from differentially-aged mice GSE25679: microRNA profiling of mesenchymal stem cells from adipose tissue of differentially aged mice Refer to individual Series
Project description:Creating in vitro models of diseases of the pancreatic ductal compartment requires a comprehensive understanding of the developmental trajectories of pancreas-specific cell types. Here, we report the single-cell characterization of the differentiation of pancreatic duct-like organoids (PDLOs) from human induced pluripotent stem cells (hiPSCs) on a microwell chip that facili-tates the uniform aggregation and chemical induction of hiPSC-derived pancreatic progenitors. Using time-resolved single-cell transcriptional profiling and immunofluorescence imaging of the forming PDLOs, we identified differentiation routes from pan-creas progenitors through ductal intermediates to two types of mature duct-like cell and a few non-ductal cell types. PDLO subpopulations expressed either mucins or the cystic fibrosis transmembrane conductance regulator, and resembled human adult duct cells. We also used the chip to uncover ductal markers relevant to pancreatic carcinogenesis, and to establish PDLO co-cultures with stellate cells, which allowed for the study of epithelial–mesenchymal signalling. The PDLO microsystem could be used to establish patient-specific pancreatic duct models.
Project description:Adipose-derived and bone-marrow-derived mesenchymal stem cells were collected from 3 pigs and cultivated in vitro up to 3 passages. At passage 3 cells were cultured to 80% confluence and induced to differentiate in adipose and bone. Cell were harvested at 0 day of differentiation (dd) or pre-differentiation, at 2, 7, and 21dd for RNA extraction. The RNA was used for a large microarray analysis using a specific pig oligo-array with >10,000 annotated genes. The main aim of the microarray analysis was to directly compare the two transcriptomics adaptation of the two mesenchymal stem cells during osteogenic and adipogenic differentiation The mesenchymal stem cells were harvested at 0, 2, 7, and 21 day of differentiation (dd). A dye-swap reference design (reference = mixture of RNA from several porcine tissues) was used.
Project description:Full protein measurements from in vitro differentiation of the human embryonic stem cell line HUES8 into pancreatic progenitors (PP) and pancreatic duct-like organoids (PDLOs). Protein intensities were quantified by mass spectrometry analysis from PPs at day 13 and from PDLOs at day 59. Please see related publication “Modelling Plasticity and Dysplasia of Pancreatic Ductal Organoids Derived from Human Pluripotent Stem Cells” for experimental details.
Project description:Adipose-derived and bone-marrow-derived mesenchymal stem cells were collected from 3 pigs and cultivated in vitro up to 3 passages. At passage 3 cells were cultured to 80% confluence and induced to differentiate in adipose and bone. Cell were harvested at 0 day of differentiation (dd) or pre-differentiation, at 2, 7, and 21dd for RNA extraction. The RNA was used for a large microarray analysis using a specific pig oligo-array with >10,000 annotated genes. The main aim of the microarray analysis was to directly compare the two transcriptomics adaptation of the two mesenchymal stem cells during osteogenic and adipogenic differentiation
Project description:Human adipose and bone marrow-derived mesenchymal stem cells were cultured either on collagenase biomaterial (CardioCel®) or normal tissue culture plastic over 48 hours in standard culture conditions, in serum-free medium.
Project description:Human adipose-derived mesenchymal stem cells were cultured either in hypoxia (Hx; <0.1% oxygen) or standard culture conditions (normoxia, Nx) over 48 hours in serum-free medium. Human tympanic membrane keratinocytes were cultured in standard culture conditions over 48 hours in serum-free medium.