Project description:To determine the role that GrgA plays in chlamydial physiology, we constructed a Chlamydia trachomatis mutant that we term L/cgad-peig, in which the chromosomal grgA (ctl0766 or ct504) has been disrupted by Targetron mutagenesis, and the plasmid carries an inducible grgA under the control of anhydrotetracycline (ATC). RNA-Seq analysis was performed for L2/cgad-peig grown with and without ATC.
Project description:The obligate intracellular developmental cycle of Chlamydia trachomatis presents significant challenges in defining its proteome. In this study we have applied quantitative proteomics to both the intracellular reticulate body (RB) and the extracellular elementary body (EB) from C. trachomatis. We used C. trachomatis L2 which is a model chlamydial isolate for such a study since it has a high infectivity: particle ratio and there is an excellent quality genome sequence. EBs and RBs (>99% pure) were quantified by chromosomal and plasmid copy number using PCR to determine the concentrations of chlamydial proteins per bacterial cell. RBs harvested at 15h post infection (PI) were purified by three successive rounds of gradient centrifugation. This is the earliest possible time to obtain purified RBs, free from host cell components in quantity, within the constraints of the technology, EBs were purified at 48h PI. We then used two-dimensional reverse phase UPLC to fractionate RB or EB peptides before mass spectroscopic analysis, providing absolute amount estimates of chlamydial proteins.