Project description:Due to its high altitude and extreme climate conditions, the Tibetan plateau is a region vulnerable to the impact of climate changes and anthropogenic perturbation, thus understanding how its microbial communities function may be of high importance. Here, we report a study to profile soil microbial structural genes, which infers functional roles of microbial communities, aiming to explore potential microbial responses to climate changes and anthropogenic perturbation. Using a microarray-based metagenomics tool named GeoChip 4.0, we showed that microbial communities in treatment site were distinct, compared with those in control site, e.g. shrubland vs grassland, grazing site vs ungrazing site, or warmer site vs colder site. Substantial variations were apparent in stress, N and C cycling genes, but they were in line with the functional roles of these genes.
Project description:Tongue squamous cell carcinoma (TSCC) varies in characteristics even in early stages and is mainly classified into three subtypes, which are superficial, exophytic and endophytic types, based on a macroscopic appearance of tumor growth.Of these subtypes, endophytic tumor has a poorer prognosis because of its invasive feature and higher frequency to have metastasis. To understand a molecular mechanism of endophytic subtype and identify biomarkers, we performed comprehensive microarray analysis for mRNAs from clinical biopsy sampleswhich were classified into subtypes and found overexpression of parvin-beta (PARVB) gene significantly related to endophytic type. PARVB is known to play a critical role in actin reorganization and focal adhesions. Knocking down PARVB expression in vitrocaused apparent decreases in cell migration and wound healing, implying that PARVB has a crucial role in cellular motility. Moreover, metastasis-free survival was significantly lowered in patients with higher PARVB expression. Therefore overexpression of PARVB is a candidate biomarker for endophytic tumor and metastasis and may be clinically applicable for decision making of an adjuvant therapy in TSCC. Twenty seven OCT embedded tissues were used to extract total RNA. Then RNAs were amplified, biotinylated, fragmented and hybridized on GeneChip Human Genome U133 plus 2.0 arrays.
Project description:This study was aimed at highlighting the endophytic to the saprophytic adaptive plasticity of B. bassiana. Thus the objective was to elucidate and compare the transcriptome of B. bassiana the fungi under endophytic, saprophytic and basal conditions.
Project description:Tongue squamous cell carcinoma (TSCC) varies in characteristics even in early stages and is mainly classified into three subtypes, which are superficial, exophytic and endophytic types, based on a macroscopic appearance of tumor growth.Of these subtypes, endophytic tumor has a poorer prognosis because of its invasive feature and higher frequency to have metastasis. To understand a molecular mechanism of endophytic subtype and identify biomarkers, we performed comprehensive microarray analysis for mRNAs from clinical biopsy sampleswhich were classified into subtypes and found overexpression of parvin-beta (PARVB) gene significantly related to endophytic type. PARVB is known to play a critical role in actin reorganization and focal adhesions. Knocking down PARVB expression in vitrocaused apparent decreases in cell migration and wound healing, implying that PARVB has a crucial role in cellular motility. Moreover, metastasis-free survival was significantly lowered in patients with higher PARVB expression. Therefore overexpression of PARVB is a candidate biomarker for endophytic tumor and metastasis and may be clinically applicable for decision making of an adjuvant therapy in TSCC.
2015-12-31 | GSE52915 | GEO
Project description:Culex quinquefasciatus female specific biopesticide
| PRJNA1044176 | ENA
Project description:Microbiome of biopesticide treated Spodoptera frugiperda
Project description:Background: While the luminal microbiome composition in the human cervicovaginal tract has been defined, the presence and impact of tissue-adherent ectocervical microbiota remain incompletely understood. Studies of luminal and tissue-associated bacteria in the gastrointestinal tract suggest that they may have distinct roles in health and disease. Here, we performed a multi-omics characterization of paired luminal and tissue samples collected from a clinically well-characterized cohort of Kenyan women. Results: We identified a tissue-adherent bacterial microbiome, with a higher alpha diversity than the luminal microbiome, in which dominant genera overall included Gardnerella and Lactobacillus, followed by Prevotella, Atopobium, and Sneathia. About half of the L. iners dominated luminal samples had a corresponding Gardnerella dominated tissue microbiome. Broadly, the tissue-adherent microbiome was associated with fewer differentially expressed host genes than the luminal microbiome. Gene set enrichment analysis revealed that L. crispatus-dominated tissue-adherent communities were associated with protein translation and antimicrobial activity, whereas a highly diverse microbiome was associated with epithelial remodeling and pro-inflammatory pathways. Communities dominated by L. iners and Gardnerella were associated with low host transcriptional activity. Tissue-adherent microbiomes dominated by Lactobacillus and Gardnerella correlated with host protein profiles associated with epithelial barrier stability, and with a more pro-inflammatory profile for the Gardnerella-dominated microbiome group. Tissue samples with a highly diverse composition had a protein profile representing cell proliferation and pro-inflammatory activity. Conclusion: We identified ectocervical tissue-adherent bacterial communities in all study participants. These communities were distinct from cervicovaginal luminal microbiota in a significant proportion of individuals. This difference could possibly explain that L. iners dominant luminal communities have a high probability of transitioning to high diverse bacterial communities including high abundance of Gardnerella. By performing integrative multi-omics analyses we further revealed that bacterial communities at both sites correlated with distinct host gene expression and protein levels. The tissue-adherent bacterial community is similar to vaginal biofilms that significantly impact women’s reproductive and sexual health.
Project description:High ambient temperature regulated the plant systemic response to the beneficial endophytic fungus Serendipita indica. Most plants in nature establish symbiotic associations with endophytic fungi in soil. Beneficial endophytic fungi induce a systemic response in the aboveground parts of the host plant, thus promoting the growth and fitness of host plants. Meanwhile, temperature elevation from climate change widely affects global plant biodiversity as well as crop quality and yield. Over the past decades, great progresses have been made in the response of plants to high ambient temperature and to symbiosis with endophytic fungi. However, little is known about their synergistic effect on host plants. The endophytic fungus Serendipita indica colonizes the roots of a wide range of plants, including Arabidopsis. Based on the Arabidopsis-S. indica symbiosis experimental system, we analyzed the synergistic effect of high ambient temperature and endophytic fungal symbiosis on host plants. By transcriptome analysis, we found that DNA replication-related genes were significantly upregulated during the systemic response of Arabidopsis aboveground parts to S. indica colonization. Plant hormones, such as jasmonic acid (JA) and ethylene (ET), play important roles in plant growth and systemic responses. We found that high ambient temperature repressed the JA and ET signaling pathways of Arabidopsis aboveground parts during the systemic response to S. indica colonization in roots. Meanwhile, PIF4 is the central hub transcription factor controlling plant thermosensory growth under high ambient temperature in Arabidopsis. PIF4 is also involving JA and/or ET signaling pathway. We found that PIF4 target genes overlapped with many differentially expressed genes (DEGs) during the systemic response, and further showed that the growth promotion efficiency of S. indica on the pif4 mutant was higher than that on the wild type plants.
Project description:An ex vivo system was developed to monitor Salmonella growth, virulence (SPI1 expression) and gene expression (measured by microarray) in response to the permissive and exclusive communities. Yellow fluorescent protein (yfp) and cyan fluorescent protein (cfp) variants were fused to the rrn growth-dependent promoter and the hilA operon (SPI-1 cell invasion locus), respectively, in Salmonella. Fluorescence associated with the YFP and CFP reporters was used to monitor Salmonella growth and SPI1 virulence gene expression in co-culture with cecal communities ex vivo. The Salmonella reporter strain was grown in dialysis tubing in a simulated cecal medium, ex vivo cecal contents (EVCC), submerged in permissive or exclusive communities, to enable collection of Salmonella cells for study. Initially, the fluorescent reporters were used to empirically determine the earliest time point at which the exclusive community had the most significant impact on Salmonella growth or virulence expression relative to the permissive community, which was six-hour co-culture of the reporter strain with the communities. Cells were harvested at that time point for gene expression comparisons. Genes within metabolic pathways that were differentially expressed in permissive vs. exclusive communities were subsequently deleted in Salmonella and mutants’ growth dynamics when cocultured with the exclusive community were monitored over 48 hours using a fluorescence plate reader.