Project description:To investigate the molecular bases of diet induced differences in milk composition, we collected milk from mid lactation dairy ewes and after 3 weeks of diet supplementation with extruded linseed. RNAs were isolated from milk somatic cells isolated from milk of 3 sheep and Illumina RNA sequencing was performed to analyze RNA synthesis in these cells.
Project description:Archive with all the variants detected within the sheep milk somatic cell transcriptome. Transcriptome sequencing (RNA-seq) was performed on total RNA extracted from milk somatic cells from ewes on days 10, 50, 120 and 150 after lambing. The experiment was performed in 4 Spanish Churra and 4 Assaf sheep, which differ in their milk production traits. The project Coordinator is Juan José Arranz from University of León, Spain.
Project description:This study presents a dynamic characterization of the sheep milk transcriptome aiming at achieving a better understanding of the sheep lactating mammary gland. Transcriptome sequencing (RNA-seq) was performed on total RNA extracted from milk somatic cells from ewes on days 10, 50, 120 and 150 after lambing. The experiment was performed in Spanish Churra and Assaf breeds, which differ in their milk production traits. Nearly 67% of the annotated genes in the reference genome (Oar_v3.1) were expressed in ovine milk somatic cells. For the two breeds and across the four lactation stages studied, the most highly expressed genes encoded caseins and whey proteins. We detected differentially expressed genes (DEGs) across lactation points, with the largest differences being found, between day 10 and day 150. Upregulated GO terms at late lactation stages were linked mainly to developmental processes linked to extracellular matrix remodeling. A total of 256 annotated DEGs were detected in the Assaf and Churra comparison. Some genes selectively upregulated in the Churra breed grouped under the endopeptidase and channel activity GO terms. These genes could be related to the higher cheese yield of this breed. Overall, this study provides the first integrated overview on sheep milk gene expression.
Project description:Staphylococci are major pathogens in humans and animals and emerging antibiotic-resistant strains have further increased the importance of this health issue. The existence of a genetic basis of host response to bacterial infections has been widely documented but the underlying mechanisms and genes are still largely unknown. Previously, two divergent lines of sheep selected on their milk somatic cell count called high and low SCS lines, have been showed to be respectively more and less susceptible to intra mammary infections (IMI). Transcriptional profiling of milk somatic cells (MSC) of high and low SCS sheep infected successively by S. epidermidis and S. aureus was performed to provide enhanced knowledge about the genetic basis of differential host response to IMI with Staphylococci. Gene expression in MSC of high and low SCS sheep collected 12h post-challenge was performed on a 15K gene ovine oligoarray (Agilent). MSC were mainly neutrophils. The high number of differentially expressed genes between the two bacterial strains indicated, among others, increased number of T-cells in MSC after S. aureus, compared to S. epidermidis challenge. Differential regulation of 366 genes between resistant and susceptible animals was largely associated with immune and inflammatory response (including pathogen recognition TLR2 pathway and cell migration), signal transduction, cell proliferation and apoptosis. Close biological connection between most of differentially expressed genes into Ingenuity Pathway Analysis networks further indicated consistency between the genes that were differentially-expressed between resistant and susceptible animals. Gene profiling in high and low SCS sheep provided strong candidates for biological pathway and gene underlying genetically determined resistance and susceptibility towards Staphylococci infections opening new fields for further investigation. Keywords: Staphylococcus epidermidis, Staphylococcus aureus, milk somatic cells, mammalian, transcriptome, immunity, mastitis 22 samples in a two-colour dye-swap experimental design
Project description:The knowledge of the genetic architecture behind feed efficiency would allow to breed more efficient animals maximizing farm profitability and reducing the environmental impact of animal production. This study analyzes high throughput gene expression data from milk samples to determine key genes and biological mechanisms associated to feed efficiency in dairy sheep.A detailed description of the sheep management practices and calculations for the feed efficiency index (FEI) are detailed in 10.3168/jds.2020-19061. For these analyses, we selected animals with divergent FEI values from a group of 40 lactating Assaf ewes. RNA-Seq was performed on milk somatic cell samples from 8 high feed efficiency sheep (H-FE), FEI = −0.29 (SD = 0.23), RFI = −0.16 (SD = 0.25), and 8 low feed efficiency sheep (L-FE), FEI = 0.81 (SD = 0.24), RFI = 0.19 (SD = 0.24)).
Project description:Milk can mediate maternal-neonatal signal transmission by the bioactive component-extracellular vesicles (EVs), which select specific types of miRNA to encapsulate. The miRNA profiling of sheep milk EVs was characterized by sequencing and compared with that of cow milk. Sheep milk EVs contained various small RNAs, including tRNA, Cis-regulatory element, rRNA, snRNA, other Rfam RNA, and miRNA, which held about 36% of all the small RNAs. Totally 84 types of miRNAs were annotated with Ovis aries by miRBase (version 22.0) in sheep milk EVs, with 75 shared types of miRNAs in all samples. Fourteen sheep milk EV-miRNAs in the top 20, occupying 98% of the total expression, were immune-related.
Project description:Staphylococci are major pathogens in humans and animals and emerging antibiotic-resistant strains have further increased the importance of this health issue. The existence of a genetic basis of host response to bacterial infections has been widely documented but the underlying mechanisms and genes are still largely unknown. Previously, two divergent lines of sheep selected on their milk somatic cell count called high and low SCS lines, have been showed to be respectively more and less susceptible to intra mammary infections (IMI). Transcriptional profiling of milk somatic cells (MSC) of high and low SCS sheep infected successively by S. epidermidis and S. aureus was performed to provide enhanced knowledge about the genetic basis of differential host response to IMI with Staphylococci. Gene expression in MSC of high and low SCS sheep collected 12h post-challenge was performed on a 15K gene ovine oligoarray (Agilent). MSC were mainly neutrophils. The high number of differentially expressed genes between the two bacterial strains indicated, among others, increased number of T-cells in MSC after S. aureus, compared to S. epidermidis challenge. Differential regulation of 366 genes between resistant and susceptible animals was largely associated with immune and inflammatory response (including pathogen recognition TLR2 pathway and cell migration), signal transduction, cell proliferation and apoptosis. Close biological connection between most of differentially expressed genes into Ingenuity Pathway Analysis networks further indicated consistency between the genes that were differentially-expressed between resistant and susceptible animals. Gene profiling in high and low SCS sheep provided strong candidates for biological pathway and gene underlying genetically determined resistance and susceptibility towards Staphylococci infections opening new fields for further investigation. Keywords: Staphylococcus epidermidis, Staphylococcus aureus, milk somatic cells, mammalian, transcriptome, immunity, mastitis
Project description:Milk and dairy products are an essential food and an economic resource in many countries. Milk component synthesis and secretion by the mammary gland involve expression of a large number of genes whose nutritional regulation remains poorly defined. We aim at understanding the genomic influence on milk quality and synthesis by comparing two sheep breeds, with different milking attitude, Sarda and Gentile di Puglia, using sheep-specific microarray technology. From sheep ESTs deposited at NCBI, we generated the first annotated microarray developed for sheep with a covering of most of the genome.
Project description:The study reports a differential proteomic analysis of the Mediterranean buffalo milk to evaluate the changes induced by Staphylococcus spp. during a subclinical intramammary infection (IMI). A number of 12 quarter milk samples, 6 of which with somatic cell count (SCC) < 50,000 cells/mL and culture-negative, and the other 6 with SCC ˃ 3,000,000 cells/mL and culture-positive to Staphylococcus aureus (SAU, n=3), SAU, or non-aureus staphylococci (NAS, n=3) was selected. Samples were analyzed using a shotgun proteomics approach, based on filter-aided sample preparation (FASP) followed by LC-MS/MS and label-free analysis. Here, the largest buffalo milk protein dataset described so far was reported. Moreover, the results demonstrated that staphylococcal IMI mostly affected proteins involved in structural functions and in innate immune defense, with changes in their abundance that were generally more intense in SAU than in NAS samples. Further, an increase in the abundance of different cathelicidins was observed, as already reported for other animals with mastitis disease (1,2). (1) Addis MF, Pisanu S, Marogna G, Cubeddu T, Pagnozzi D, Cacciotto C, et al. Production and release of antimicrobial and immune defense proteins by mammary epithelial cells following Streptococcus uberis infection of sheep. Infect Immun. 2013;81: 3182–3197. (2) Addis MF, Tedde V, Dore S, Pisanu S, Puggioni GMG, Roggio AM, et al. Evaluation of milk cathelicidin for detection of dairy sheep mastitis. J Dairy Sci. Elsevier; 2016;99: 6446–6456. In conclusion, our results provide the first in depth characterization of buffalo milk proteins, describe the changes induced by SAU and NAS subclinical intramammary infection and suggest indications to reveal subclinical staphylococcal mastitis in buffalo by the milk proteome investigation.