Project description:Transcription profiling by high throughput sequencing of samples of (local) infected and systemic, uninfected leaves of barley Barke plants that were infected with Pseudomonas syringae pathovar japonica or Xanthomonas translucens pathovar cerealis or given a mock treatment
Project description:Pseudomonas syringae pv. phaseolicola (Pph) is a significant bacterial pathogen of agricultural crops, and phage Φ6 and other members of the dsRNA virus family Cystoviridae undergo lytic (virulent) infection of Pph, using the type IV pilus as the initial site of cellular attachment. Despite the popularity of Pph/phage Φ6 as a model system in evolutionary biology, Pph resistance to phage Φ6 remains poorly characterized. To investigate differences between phage Φ6 resistant Pseudomonas syringae pathovar phaseolicola strains, we performed expression analysis of super and non piliated strains of Pseudomonas syringae to determine the genetic cause of resistance to viral infection.
Project description:Purpose: Pseudomonas syringae pv. actinidiae (Psa) is a phytopathogen that causes devastating bacterial canker in kiwifruit. Among five biovars defined by genetic, biochemical and virulence traits, Psa3 is the most aggressive and is responsible for the most recent reported outbreaks, but the molecular basis of its heightened virulence is unclear. A custom P. syringae multi-strain whole-genome microarray platform, encompassing biovars Psa1, Psa2 and Psa3 and the well-established model P. syringae pv. tomato, was used to analyse early bacterial responses to an apoplast-like minimal medium. Conlusion: this work highlighted that diverse early responses to the host apoplast, even among bacteria belonging to the same pathovar, can lead to different virulence strategies and may explain the differing outcomes of infections.
Project description:Transcription profiling by high throughput sequencing of Arabidopsis upf1-5 mutant challenged with pathogenic or non-pathogenic Pseudomonas syringae DC3000 strains
Project description:Transcription profiling by high throughput sequencing of Arabidopsis mutants in response to Pseudomonas syringae infection to study plant systemic acquired resistance