Project description:Water electrospray is small charged droplets generated by a laboratory-designed prototype module. Extensive investigations have explored its physical properties and identified a potential non-chemical biocide against air-borne pathogens. However, since humans can inhale water electrospray particles through breath, humans' safety and potential toxicity warrant investigation. Hence, to offer insights into the effect of water electrospray on humans, we analyzed the immunopathological response to water electrospray using a nasal challenge mouse model. For this, we accessed the fundamental immune responses following the water electrospray intranasal challenge by comparing its effect with sodium hypochlorite, a biocidal agent with known toxicity. Our results indicate that water electrospray did not induce pathological immune reactions: challenged mice did not exhibit body weight loss and increased inflammatory cytokine production. Furthermore, histopathological analysis revealed that water electrospray did not damage the lung tissue, whereas sodium hypochlorite–treated mice showed significant lung tissue damage with signs of neutrophils and eosinophils infiltration. Finally, transcriptomic analysis on lung tissue confirmed the absence of pathological immune response in water electrospray-treated mice compared with sodium hypochlorite–treated mice. Together, we provide evidence that water electrospray is a safe technology for its use in disinfecting air-borne pathogens with little or no effect on immune system activation at the preclinical level.
Project description:Vibrio species are recognized for their role in food- and water-borne diseases in humans, fish, and aquatic invertebrates. We screened bacterial strains isolated from raw food shrimp for those that are bactericidal to Vibrio strains. Here we identify and characterize Aeromonas dhakensis strain A603 which shows robust bactericidal activity specifically towards Vibrio and related taxa but less potency toward other Gram-negative species. Using the A603 genome and genetic analysis, we show that two antibacterial mechanisms account for its vibriocidal activity -- a highly potent Type Six Secretion System (T6SS) and biosynthesis of a vibriocidal phenazine-like small molecule, named here as Ad-Phen. Further analysis indicates coregulation between Ad-Phen and a pore-forming T6SS effector TseC, which potentiates V. cholerae to killing by Ad-Phen.
Project description:Effect of 5.4 ppm polycyclic aromatic hydrocarbons (PAHs) and 18.2 ppm alkylphenols (APs) on gene expression in adult Zebrafish (Danio rerio) liver after 1 and 7 weeks of water-borne exposure.
Project description:Purpose: Sperm-borne RNA are particularly sensitive to degradation and methodology-induced bias, thus necessitating the use of a consistent, effective RNA extraction protocol for inter-species comparisons. To this end, we established SpermBase, an RNA expression database consisting of small and large RNA expression data obtained using consistent methodologies. Methods: Total RNA was extracted from total sperm and sperm head samples using an RNA extraction protocol that required only slight, species-specific alterations at the lysis stage. Total RNA was subjected to either RNA-Seq (large RNA) or sncRNA-Seq (small RNA). Results: By using a consistent methodology, we were able to perform a cross-species analysis on the conserved features of large and small sperm-borne RNAs. We identified conserved features in both populations of RNAs in the four mammalian species (i.e., mouse, rabbit, rat, and human) surveyed. Conclusions: Our study demonstrates an effective, near-universal approach to the study of sperm-borne RNAs, and identifies conserved characteristics in the large and small RNA populations of mammalian sperm.
Project description:Legionella pneumophila is a water-borne pathogen, and thus survival in the aquatic environment is central to its transmission to humans. Hence, identifying genes required for its survival in water could help prevent Legionnaires’ disease outbreaks. In the present study, we investigate for the first time the role of the sigma factor RpoS in promoting the survival in water, where L. pneumophila experiences total nutrient deprivation. The rpoS mutant showed a significant survival defect compared to the wild-type strain in defined water medium (DFM). Then, we analyzed the transcriptome of the rpoS mutant during exposure to water using whole genome microarray analysis. We found that RpoS negatively affects the expression of several genes, including genes required for replication, cell division, translation and transcription, suggesting that the mutant fails to shutdown major metabolic programs.
Project description:Ixodes species ticks are competent vectors of tick-borne viruses including tick-borne encephalitis and Powassan encephalitis. Tick saliva has been shown to facilitate and enhance viral infection. This likely occurs by saliva-mediated modulation of host responses into patterns favorable for viral infection and dissemination. Because of the rapid kinetics of tick-borne viral transmission, this modulation must occur as early as tick attachment and initiation of feeding. In this study, the gene expression profile of cutaneous bite-site lesions created by uninfected ticks were analyzed at 1, 3, 6, and 12 hours after Ixodes scapularis nymphal tick attachment to discover host pathways or responses potentially important in tick-borne viral establishment.
Project description:We describe the first comprehensive study confirming the existence of DNA methylation, characterising the methylomes of three life stages of the food-borne agent of human trichinellosis, Trichinella spiralis. We further identify sets of genes where the DNA methylation status varied between thedevelopmental stages that are closely related to the parasitism of the organism. Examination of DNA methylation status in three life stages (Adult, muscle larve, new born larve) of Trchinella Spiralis using MethylC-seq.
Project description:Ixodes species ticks are competent vectors of tick-borne viruses including tick-borne encephalitis and Powassan encephalitis. Tick saliva has been shown to facilitate and enhance viral infection. This likely occurs by saliva-mediated modulation of host responses into patterns favorable for viral infection and dissemination. Because of the rapid kinetics of tick-borne viral transmission, this modulation must occur as early as tick attachment and initiation of feeding. In this study, the gene expression profile of cutaneous bite-site lesions created by uninfected ticks were analyzed at 1, 3, 6, and 12 hours after Ixodes scapularis nymphal tick attachment to discover host pathways or responses potentially important in tick-borne viral establishment. Four milimeter ear biopsies from BALB/cJ mice infested with Ixodes scapularis nymphs were assayed using Affymetrix genechip 430A 2.0 arrays at 1, 3, 6, and 12 hours after infestation during a primary exposure. 3 mice were measured at each time point. Controls were 3 similarly housed but tick-free mice.