Project description:Comparative transcriptomic analysis between methane- and methane plus xylose- grown cultures revealed different transcriptional responses of pXyl M. alcaliphilum 20Z strain on diffirent growth modes.
Project description:Here we present the assembled genome of the facultative methanotroph, Methylocystis strain SB2, along with assessment of its transcriptome when grown on methane vs. ethanol. As expected, transcriptomic analyses indicate methane is converted to carbon dioxide via the canonical methane oxidation pathway for energy generation, and that carbon is assimilated at the level of formaldehyde via the serine cycle. When grown on ethanol, it appears this strain converts ethanol to acetyl-CoA and then utilizes the TCA cycle for energy generation and the ethylmalonyl CoA pathway for the production of biomass. All cultures were grown in triplicates for subsequent DNA and RNA extraction as well as for subsequent sequencing using Illumina. Transcriptomic analysis results presented in this Series.
Project description:Our goal is to convert methane efficiently into liquid fuels that may be more readily transported. Since aerobic oxidation of methane is less efficient, we focused on anaerobic processes to capture methane, which are accomplished by anaerobic methanotrophic archaea (ANME) in consortia. However, no pure culture capable of oxidizing and growing on methane anaerobically has been isolated. In this study, Methanosarcina acetivorans, an archaeal methanogen, was metabolically engineered to take up methane, rather than to generate it. To capture methane, we cloned the DNA coding for the enzyme methyl-coenzyme M reductase (Mcr) from an unculturable archaeal organism from a Black Sea mat into M. acetivorans to effectively run methanogenesis in reverse. The engineered strain produces primarily acetate, and our results demonstrate that pure cultures can grow anaerobically on methane.
Project description:Methanotrophs, which help regulate atmospheric levels of methane, are active in diverse natural and man-made environments. This range of habitats and the feast-famine cycles seen by many environmental methanotrophs suggest that methanotrophs dynamically mediate rates of methane oxidation. Global methane budgets require ways to account for this variability in time and space. Functional gene biomarker transcripts are increasingly being studied to inform the dynamics of diverse biogeochemical cycles. Previously, per-cell transcript levels of the methane oxidation biomarker, pmoA, were found to vary quantitatively with respect to methane oxidation rates in model aerobic methanotroph, Methylosinus trichosporium OB3b. In the present study, these trends were explored for two additional aerobic methanotroph pure cultures, Methylocystis parvus OBBP and Methylomicrobium album BG8. At steady-state conditions, per cell pmoA mRNA transcript levels strongly correlated with per cell methane oxidation across the three methanotrophs across many orders of magnitude of activity (R2 = 0.91). Additionally, genome-wide expression data (RNA-seq) were used to explore transcriptomic responses of steady state M. album BG8 cultures to short-term CH4 and O2 limitation. These limitations induced regulation of genes involved in central carbon metabolism (including carbon storage), cell motility, and stress response.
Project description:Raw LC-MS/MS data of methane-oxidizing community from Lake Washington sediment enrichment (collected from 47.63 N, 122.25 W on July 15, 2013) grown in low-iron nitrate mineral salts (0.1uM FeCl3). Included are .mzml and .raw files for the enrichment grown in 12C-methane, 13C-methane, and 13C-methane plus 12C-DHB.
Project description:Raw LC-MS/MS data of methane-oxidizing community from Lake Washington sediment enrichment (collected from 47.63 N, 122.25 W on July 15, 2013) grown in low-iron nitrate mineral salts (0.1uM FeCl3). Included are .mzml and .raw files for the enrichment grown in 12C-methane, 13C-methane, and 13C-methane plus 12C-DHB.