Project description:A functional gene microarray was developed and used to investigate phytoplankton community composition and gene expression in the English Channel. Genes encoding the CO2 fixation enzyme RuBisCO (rbcL) and the nitrate assimilation enzyme nitrate reductase (NR) representing several major groups of phytoplankton were included as oligonucleotide probes on the 'phytoarray'. Five major groups of eukaryotic phytoplankton that possess the Type 1D rbcL gene were detected, both in terms of presence (DNA) and activity (rbcL gene expression). Changes in relative signal intensity among the Type 1D rbcL probes indicated a shift from diatom dominance in the spring bloom to dominance by haptophytes and flagellates later in the summer. Because of the limitations of a smaller database, NR probes detected fewer groups, but due to the greater diversity among known NR sequences, NR probes provided higher phylogenetic resolution than did rbcL probes, and identified two uncultivated diatom phylotypes as the most abundant (DNA) and active (NR gene expression) in field samples. Unidentified chlorophytes and the diatom Phaeodactylum tricornutum were detected at both the DNA and cDNA (gene expression) levels. The reproducibility of the array was evaluated in several ways and future directions for further improvement of probe development and sensitivity are outlined. The phytoarray provides a relatively high resolution, high throughput approach to assessing phytoplankton community composition in marine environments. Keywords: seawater natural assemblages, functional gene expression Two functional genes, nitrate reductase and RuBisCO, 4 - 8 replicate features per array
Project description:A functional gene microarray was developed and used to investigate phytoplankton community composition and gene expression in the English Channel. Genes encoding the CO2 fixation enzyme RuBisCO (rbcL) and the nitrate assimilation enzyme nitrate reductase (NR) representing several major groups of phytoplankton were included as oligonucleotide probes on the 'phytoarray'. Five major groups of eukaryotic phytoplankton that possess the Type 1D rbcL gene were detected, both in terms of presence (DNA) and activity (rbcL gene expression). Changes in relative signal intensity among the Type 1D rbcL probes indicated a shift from diatom dominance in the spring bloom to dominance by haptophytes and flagellates later in the summer. Because of the limitations of a smaller database, NR probes detected fewer groups, but due to the greater diversity among known NR sequences, NR probes provided higher phylogenetic resolution than did rbcL probes, and identified two uncultivated diatom phylotypes as the most abundant (DNA) and active (NR gene expression) in field samples. Unidentified chlorophytes and the diatom Phaeodactylum tricornutum were detected at both the DNA and cDNA (gene expression) levels. The reproducibility of the array was evaluated in several ways and future directions for further improvement of probe development and sensitivity are outlined. The phytoarray provides a relatively high resolution, high throughput approach to assessing phytoplankton community composition in marine environments. Keywords: seawater natural assemblages, functional gene expression
2008-09-12 | GSE12742 | GEO
Project description:DNA extraction and high throughput DNA sequencing
Project description:Formalin-fixed, paraffin-embedded (FFPE) tissues are an invaluable resource for retrospective studies but protein extraction and subsequent sample processing steps have shown to be challenging for mass spectrometry (MS) analysis. Streamlined high-throughput sample preparation workflows are essential for efficient peptide extraction from complex clinical specimens such as fresh frozen tissues or FFPE. Overall, proteome analysis has gained significant improvements in the instrumentation, acquisition methods, sample preparation workflows and analysis pipelines yet even the most recent FFPE workflows remain complex and are not readily scalable. Here, we present an optimized workflow for Automated Sonication-free Acid-assisted Proteome (ASAP) extraction from FFPE sections. ASAP enables efficient protein extraction from FFPE specimens achieving similar proteome coverage as established methods using time in equipment-heavy sonication-based methods at reduced sample processing time. The broad applicability of ASAP on archived pediatric tumor FFPE specimens resulted in high-quality data with increased proteome coverage and quantitative reproducibility. Our study demonstrates the practicality and superiority of the ASAP workflow as a streamlined, time and cost-effective pipeline for high-throughput FFPE proteomics of clinical specimens.
2024-05-21 | PXD036910 | Pride
Project description:Low-cost sample preservation methods for high-throughput processing of rumen microbiomes
| PRJNA791831 | ENA
Project description:Sludge sample of high-throughput sequencing data
Project description:Marine snow plays a central role in carbon cycling. It consists of organic particles and particle-associated (PA) microbMarine snow plays a central role in carbon cycling. It consists of organic particles and particle-associated (PA) microbial communities that are embedded in a sugary matrix. Metaproteomic analysis offers the unique opportunity to gain unprecedented insight into the microbial community composition and biomolecular activity of environmental samples. In order to realize this potential for marine PA microbial communities, new methods of protein extraction must be developed. In this study, we used 1D-SDS-PAGEs and LC-MS/MS to compare the efficiency of six established protein extraction protocols for their applicability of metaproteomic analyses of the PA microbial community in the North Sea. A combination of SDS-buffer extraction and bead beating resulted in the greatest number of identified protein groups. As expected, a metagenomic database of the same environmental sample increased the number of protein identification by approximately 50%. To demonstrate the application of our established protocol, particulate bacterioplankton samples collected during spring phytoplankton bloom in 2009 near the island Helgoland, were analysed by a GeLC-MS/MS-based metaproteomic approach. Our results indicated that there are only slight differences in the taxonomical distribution between free-living (FL) and PA bacteria but that the abundance of protein groups involved in polysaccharide degradation, motility and particle specific stress (oxygen limitation, nutrient limitation, heavy metal stress) is higher in the PA fractions. ial communities that are embedded in a sugary matrix. Metaproteomic analysis offers the unique opportunity to gain unprecedented insight into the microbial community composition and biomolecular activity of environmental samples. In order to realize this potential for marine PA microbial communities, new methods of protein extraction must be developed. In this study, we used 1D-SDS-PAGEs and LC-MS/MS to compare the efficiency of six established protein extraction protocols for the their applicability of metaproteomic analyses of the PA microbial community in the North Sea. A combination of SDS-buffer extraction and bead beating resulted in the greatest number of identified protein groups. As expected, a metagenomic database of the same environmental sample increased the number of protein identification by approximately 50%. To demonstrate the application of our established protocol, particulate bacterioplankton samples collected during spring phytoplankton bloom in 2009 near the island Helgoland, were analysed by a GeLC-MS/MS-based metaproteomic approach. Our results indicated that there are only slight differences in the taxonomical distribution between free-living (FL) and PA bacteria but that the abundance of protein groups involved in polysaccharide degradation, motility and particle specific stress (oxygen limitation, nutrient limitation, heavy metal stress) is higher in the PA fractions.
Project description:Major advances have been made to improve the sensitivity of mass analyzers, spectral quality, and the speed of data processing enabling more comprehensive proteome discovery and quantitation. While focus has recently begun shifting toward robust proteomic sample preparation efforts, a high throughput proteomics sample preparation is still lacking. We report the development of a highly-automated universal 384-well plate sample preparation platform with high reproducibility and adaptability for extraction of proteins from cells within a culture plate. Digestion efficiency was excellent in comparison to a commercial digest peptide standard with minimal sample loss while improving sample preparation throughput by 20- to 40-fold (<1 min/sample for entire process from cells to clean peptides). Analysis of six human cell types, which included two primary cell samples, identified and quantified approximately 4,000 proteins for each sample in a single HPLC-MS/MS injection with only 100 -10,000 cells, thus demonstrating universality of the platform.