Project description:Eimeria are obligate intracellular protozoan parasites which can affect chickens. After exposure to Eimeria chickens establish (partial) protective immunity to the homologues strain. In this paper we investigate the process responsible for Eimeria protection. In order to find host reactions specificly involved in protection to homologous re-infection we investigated the host reactions after primary infection and a homologous or heterologous secondary infection.<br><br>Broilers were mock infected or infected with E.maxima (Max) at one week of age. Two weeks later broilers were mock infected, infected with E.maxima or E.acervulina. Oocyst output, T-cell population and cytokine mRNA expression profiles and Eimeria DNA profiles were measured 2, 4 and 7 days pi. Specific regulation of gene expression profiles was monitored by a whole genome oligo-array containing 20.673 oligoï¾´s at 8 and 24 hours pi.<br><br>
Project description:Maintaining transcriptional fidelity is essential for precise gene regulation and genome stability. Despite this, cryptic antisense transcription, occurring opposite to canonical coding sequences, is a pervasive feature across all domains of life. How such potentially harmful cryptic sites are regulated remains incompletely understood. Here, we show that nucleosome arrays within gene bodies play a key role in suppressing cryptic transcription. Using the fission yeast Schizosaccharomyces pombe as a model, we demonstrate that CHD1-family chromatin remodelers coordinate with the transcription elongation machinery, specifically the PAF complex, to position nucleosomes at sites of cryptic transcription initiation within gene bodies. In the absence of CHD1, AT-rich sequences within gene bodies lose nucleosome occupancy, exposing promoter-like sequences that drive cryptic initiation. While cryptic transcription is generally detrimental, we identify a subset of antisense transcripts that encode critical meiotic genes, suggesting that cryptic transcription can also serve as a source of regulatory innovation. These findings underscore the essential role of nucleosome remodelers in maintaining transcriptional fidelity and reveal their broader contributions to cellular homeostasis and evolutionary adaptability.
Project description:Maintaining transcriptional fidelity is essential for precise gene regulation and genome stability. Despite this, cryptic antisense transcription, occurring opposite to canonical coding sequences, is a pervasive feature across all domains of life. How such potentially harmful cryptic sites are regulated remains incompletely understood. Here, we show that nucleosome arrays within gene bodies play a key role in suppressing cryptic transcription. Using the fission yeast Schizosaccharomyces pombe as a model, we demonstrate that CHD1-family chromatin remodelers coordinate with the transcription elongation machinery, specifically the PAF complex, to position nucleosomes at sites of cryptic transcription initiation within gene bodies. In the absence of CHD1, AT-rich sequences within gene bodies lose nucleosome occupancy, exposing promoter-like sequences that drive cryptic initiation. While cryptic transcription is generally detrimental, we identify a subset of antisense transcripts that encode critical meiotic genes, suggesting that cryptic transcription can also serve as a source of regulatory innovation. These findings underscore the essential role of nucleosome remodelers in maintaining transcriptional fidelity and reveal their broader contributions to cellular homeostasis and evolutionary adaptability.
Project description:Maintaining transcriptional fidelity is essential for precise gene regulation and genome stability. Despite this, cryptic antisense transcription, occurring opposite to canonical coding sequences, is a pervasive feature across all domains of life. How such potentially harmful cryptic sites are regulated remains incompletely understood. Here, we show that nucleosome arrays within gene bodies play a key role in suppressing cryptic transcription. Using the fission yeast Schizosaccharomyces pombe as a model, we demonstrate that CHD1-family chromatin remodelers coordinate with the transcription elongation machinery, specifically the PAF complex, to position nucleosomes at sites of cryptic transcription initiation within gene bodies. In the absence of CHD1, AT-rich sequences within gene bodies lose nucleosome occupancy, exposing promoter-like sequences that drive cryptic initiation. While cryptic transcription is generally detrimental, we identify a subset of antisense transcripts that encode critical meiotic genes, suggesting that cryptic transcription can also serve as a source of regulatory innovation. These findings underscore the essential role of nucleosome remodelers in maintaining transcriptional fidelity and reveal their broader contributions to cellular homeostasis and evolutionary adaptability.
Project description:Maintaining transcriptional fidelity is essential for precise gene regulation and genome stability. Despite this, cryptic antisense transcription, occurring opposite to canonical coding sequences, is a pervasive feature across all domains of life. How such potentially harmful cryptic sites are regulated remains incompletely understood. Here, we show that nucleosome arrays within gene bodies play a key role in suppressing cryptic transcription. Using the fission yeast Schizosaccharomyces pombe as a model, we demonstrate that CHD1-family chromatin remodelers coordinate with the transcription elongation machinery, specifically the PAF complex, to position nucleosomes at sites of cryptic transcription initiation within gene bodies. In the absence of CHD1, AT-rich sequences within gene bodies lose nucleosome occupancy, exposing promoter-like sequences that drive cryptic initiation. While cryptic transcription is generally detrimental, we identify a subset of antisense transcripts that encode critical meiotic genes, suggesting that cryptic transcription can also serve as a source of regulatory innovation. These findings underscore the essential role of nucleosome remodelers in maintaining transcriptional fidelity and reveal their broader contributions to cellular homeostasis and evolutionary adaptability.
Project description:This study uses five species of the genus Ecrobia as a model taxon to demonstrate the applicability of proteomic fingerprinting measured by MALDI-TOF MS (matrix-assisted laser/desorption ionization time-of-flight mass spectrometry) to cryptic gastropod species and evaluate the discriminative power the proteomic profiles.