Project description:We undertook a meta-analysis based on DNA methylation patterns of Group3/4 subgroup medulloblastoma from three published studies, alongside additional unpublished tumours (total n=1501).
2019-06-11 | GSE130051 | GEO
Project description:Unpublished Escherichia genome-wide sequencing data
| PRJNA490249 | ENA
Project description:Resistflow-WWTPs-16S DNA data (unpublished)
Project description:BackgroundThe full-length 16S rRNA sequencing can better improve the taxonomic and phylogenetic resolution compared to the partial 16S rRNA gene sequencing. The 16S-FAS-NGS (16S rRNA full-length amplicon sequencing based on a next-generation sequencing platform) technology can generate high-quality, full-length 16S rRNA gene sequences using short-read sequencers, together with assembly procedures. However there is a lack of a data analysis suite that can help process and analyze the synthetic long read data.ResultsHerein, we developed software named 16S-FASAS (16S full-length amplicon sequencing data analysis software) for 16S-FAS-NGS data analysis, which provided high-fidelity species-level microbiome data. 16S-FASAS consists of data quality control, de novo assembly, annotation, and visualization modules. We verified the performance of 16S-FASAS on both mock and fecal samples. In mock communities, we proved that taxonomy assignment by MegaBLAST had fewer misclassifications and tended to find more low abundance species than the USEARCH-UNOISE3-based classifier, resulting in species-level classification of 85.71% (6/7), 85.71% (6/7), 72.72% (8/11), and 70% (7/10) of the target bacteria. When applied to fecal samples, we found that the 16S-FAS-NGS datasets generated contigs grouped into 60 and 56 species, from which 71.62% (43/60) and 76.79% (43/56) were shared with the Pacbio datasets.Conclusions16S-FASAS is a valuable tool that helps researchers process and interpret the results of full-length 16S rRNA gene sequencing. Depending on the full-length amplicon sequencing technology, the 16S-FASAS pipeline enables a more accurate report on the bacterial complexity of microbiome samples. 16S-FASAS is freely available for use at https://github.com/capitalbio-bioinfo/FASAS.
Project description:Mass spectrometry remains an important method for analysis of modified nucleosides ubiquitously present in cellular RNAs, in particular for ribosomal and transfer RNAs that play crucial roles in mRNA translation and decoding. Furthermore, modifications have effect on the lifetimes of nucleic acids in plasma and cells and are consequently incorporated into RNA therapeutics. To provide an analytical tool for sequence characterization of modified RNAs, we developed Pytheas, an open-source software package for automated analysis of tandem MS data for RNA. This dataset contains the analysis of 14N and 15N-labeled 16S RNA from E. coli, including all the known RNA modifications (excluding pseudouridines). The analysis has been performed using three different protocols and instruments: Agilent Q-TOF, Waters Synapt G2-S, and Thermo Scientific Orbitrap Fusion Lumos.