Project description:We observed that deletion of polyketide synthase (pks) from E. coli NC101 reduces its ability to induce tumors in interleukin-10 knockout (Il10-/-) mice injected with azoxymethane (AOM), without altering histologic inflammation. The goal of this experiment is to assess inflammatory cytokine levels in colonic tissue of these mice. 2 germ-free Il10-/- mice were assayed and used as controls. 3 E. coli NC101 and 3 E. coli NC101-delta-pks monoassociated mice were experimental samples.
Project description:We observed that deletion of polyketide synthase (pks) from E. coli NC101 reduces its ability to induce tumors in interleukin-10 knockout (Il10-/-) mice injected with azoxymethane (AOM), without altering histologic inflammation. The goal of this experiment is to assess inflammatory cytokine levels in colonic tissue of these mice.
Project description:Polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) hybrid systems typically use complex protein-protein interactions to facilitate direct transfer of intermediates between these multimodular megaenzymes. In the canal-associated neurons (CANs) of Caenorhabditis elegans, PKS-1 and NRPS-1 produce the nemamides, the only known hybrid polyketide-nonribosomal peptides biosynthesized by animals, through a poorly understood mechanism. Here, we use genome editing and mass spectrometry to map the roles of individual PKS-1 and NRPS-1 enzymatic domains in nemamide biosynthesis. Furthermore, we show that nemamide biosynthesis requires at least five additional enzymes expressed in the CANs that are encoded by genes distributed across the worm genome. We identify the roles of these enzymes and discover a mechanism for trafficking intermediates between a PKS and an NRPS. Specifically, the enzyme PKAL-1 activates an advanced polyketide intermediate as an adenylate and directly loads it onto a carrier protein in NRPS-1. This trafficking mechanism provides a means by which a PKS-NRPS system can expand its biosynthetic potential and is likely important for the regulation of nemamide biosynthesis.
Project description:The goal of this experiment is compare gene expression profiles between C. acetobutylicum wild-type and pks mutant strains to determine which genes might be under the control of self-produced polyketides. Samples for RNA-seq comparison were taken from batch fermentation cultures 26 hours post-inoculation.