Project description:ObjectiveThe 1,000 wheat exome project captured the single nucleotide variants in the coding regions of a diverse set of 890 wheat accessions to analyse the contribution of introgression to adaptation of wheat. However, this highly useful single nucleotide polymorphism (SNP) dataset is based on RefSeq v1.0 of the International Wheat Genome Sequencing Consortium (IWGSC) assembly of the bread wheat genome of Chinese Spring. This reference sequence has recently been updated using optical maps and long-read sequencing to produce the improved RefSeq v2.1. Our objective was to develop a reliable high-density SNP dataset positioned onto RefSeq v2.1 because it is the current standard reference sequence used by wheat researchers.ResultsThe 3,039,822 SNPs originally positioned on RefSeq v1.0 were projected to v2.1 using Liftoff with four different flanking regions, and 2,946,536 SNPs were consistently lifted to the same location irrespective of the flanking region lengths. Of these, 2,799,166 were located on the '+' ve strand. The distribution of the SNPs across the 21 chromosomes on RefSeq v2.1 was similar to that of RefSeq v1.0. Among the SNPs that were based on unanchored scaffolds in RefSeq v1.0, 11,938 were projected to one of the 21 pseudomolecules in the upgraded assembly. This SNP dataset constitutes a much-needed standardized resource for the wheat research community.
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived Triticum aestivum transcriptome (RNA-seq) profiling methods and to evaluate genotypes associated with resistance against the Wheat dwarf virus. Methods: Triticum aestivum mRNA profiles of genotypes associated with resistance against the Wheat dwarf virus were generated by deep sequencing, in four replicates, using Illumina. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRT–PCR validation was performed using TaqMan and SYBR Green assays. Conclusions: Our study represents the first detailed analysis of Triticum aestivum transcriptomes, with biologic replicates, generated by RNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA and miRNA content within a cell or tissue. We conclude that RNA-seq based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions.
Project description:We identified the long non-coding RNAs (lncRNAs) in Triticum aestivum infected with Fusarium graminearum by high-throughput RNA sequencing. More than 393 million clean reads were obtained from Illumina Hiseq 4000 system and 126,391 transcripts was identified as high-confidence lncRNAs in T. aestivum against F. graminearum by an integrated approach. Already well over 4,130 of the total 4,276 differentially expressed lncRNAs were specifically expressed at 12 h post-inoculation (hpi), but only 89 of these were specifically expressed at 24 hpi, indicating that the initial stage was the crucial stage for lncRNA-mediated gene regulation of wheat defense against F. graminearum. Target analysis showed the lncRNAs participated in various biological stress processes.
Project description:Triticum aestivum cultivars Scorpion 25 and Xi 19 were grown under both normal and hot/dry conditions. We compared the effect of these two growth conditions on these two closely related varieties.
Project description:MS2 data for two Indian varieties of Triticum aestivum L. (Wheat). P1 to P5 files represent MS2 data in positive ESI mode whereas N1 to N5 files represent MS2 data in negative ESI mode.
Project description:Mass spectrometry-based wheat proteomics is challenging because the current interpretation of mass spectrometry data relies on public databases that are not exhaustive (UniProtKB/Swiss-Prot) or contain many redundant and poor or un-annotated entries (UniProtKB/TrEMBL). Here we report the development of a manually curated database of the metabolic proteins of Triticum aestivum (hexaploid wheat), named TriMet_DB (Triticum aestivum Metabolic Proteins DataBase). The manually curated TriMet_DB was generated in FASTA format, so that it can be read directly by programs used to interpret the mass spectrometry data. Furthermore, the complete list of entries included in the TriMet_DB is reported in a freely available resource, which includes for each protein the description, the gene code, the protein family,and the allergen name (if any). To evaluate its performance, the TriMet_DB was used to interpret the mass spectrometry data acquired on the metabolic protein fraction extracted from the MEC cultivar of Triticum aestivum.