Project description:Purpose: Multiple myeloma is a malignancy of plasma cells. Extensive genetic and transcriptional characterization of myeloma has identified subtypes with prognostic and therapeutic implications. In contrast, relatively little is known about the myeloma epigenome. Experimental Design: CD138+CD38+ myeloma cells were isolated from fresh bone marrow aspirate or the same aspirate after freezing for one to six months. Gene expression and chromatin accessibility were compared between fresh and frozen samples by RNA-seq and ATAC-seq. Chromatin accessible regions were used to identify regulatory RNA expression in over 700 samples from newly diagnosed patients in the MMRF CoMMpass trial (NCT01454297). Results: Gene expression and chromatin accessibility of cryopreserved myeloma recapitulated that of freshly isolated samples. ATAC-seq performed on a series of biobanked specimens identified thousands of chromatin accessible regions with hundreds being highly coordinated with gene expression. Over 4,700 of these chromatin accessible regions were transcribed in newly diagnosed myelomas from the CoMMpass trial. Regulatory element activity alone recapitulated myeloma gene expression subtypes, and in particular myeloma subtypes with IGH translocations were defined by transcription of distal regulatory elements. Moreover, enhancer activity predicted oncogene expression implicating gene regulatory mechanisms in aggressive myeloma. Conclusions: These data demonstrate the feasibility of using biobanked specimens for retrospective studies of the myeloma epigenome and illustrate the unique enhancer landscapes of myeloma subtypes that are coupled to gene expression and disease progression.
Project description:Samples in this series are pre-treatment bone marrow aspirates from multiple myeloma patients. Keywords = Multiple Myeloma, Bone Marrow, Pre-Treatment Keywords: other
Project description:Samples in this series are pre-treatment bone marrow aspirates from multiple myeloma patients Keywords = CKS1B in Multiple Myeloma, Bone Marrow, Pre-Treatment Keywords: other
Project description:<h4><strong>BACKGROUND:</strong> Multiple myeloma is characterized by clonal proliferation of malignant plasma cells in the bone marrow that produce monoclonal immunoglobulins. N-glycosylation changes of these monoclonal immunoglobulins have been reported in multiple myeloma, but previous studies only detected limited serum N-glycan features.</h4><h4><strong>METHODS:</strong> Here, a more detailed study of the human serum N-glycome of 91 multiple myeloma patients and 51 controls was performed. We additionally analyzed sequential samples from patients (n = 7) which were obtained at different time points during disease development as well as 16 paired blood serum and bone marrow plasma samples. N-glycans were enzymatically released and measured by mass spectrometry after linkage specific derivatization of sialic acids.</h4><h4><strong>RESULTS:</strong> A decrease in both α2,3- and α2,6-sialylation, galactosylation and an increase in fucosylation within complex-type N-glycans were found in multiple myeloma patients compared to controls, as well as a decrease in difucosylation of diantennary glycans. The observed glycosylation changes were present in all ISS stages, including the 'low-risk' ISS I. In individual patients, difucosylation of diantennary glycans decreased with development of the disease. Protein N-glycosylation features from blood and bone marrow showed strong correlation. Moreover, associations of monoclonal immunoglobulin (M-protein) and albumin levels with glycan traits were discovered in multiple myeloma patients.</h4><h4><strong>CONCLUSIONS & GENERAL SIGNIFICANCE: </strong>In conclusion, serum protein N-glycosylation analysis could successfully distinguish multiple myeloma from healthy controls. Further studies are needed to assess the potential roles of glycan trait changes and the associations of glycans with clinical parameters in multiple myeloma early detection and prognosis.</h4>
Project description:Purpose: Multiple myeloma is a malignancy of plasma cells. Extensive genetic and transcriptional characterization of myeloma has identified subtypes with prognostic and therapeutic implications. In contrast, relatively little is known about the myeloma epigenome. Experimental Design: CD138+CD38+ myeloma cells were isolated from fresh bone marrow aspirate or the same aspirate after freezing for one to six months. Gene expression and chromatin accessibility were compared between fresh and frozen samples by RNA-seq and ATAC-seq. Chromatin accessible regions were used to identify regulatory RNA expression in over 700 samples from newly diagnosed patients in the MMRF CoMMpass trial (NCT01454297). Results: Gene expression and chromatin accessibility of cryopreserved myeloma recapitulated that of freshly isolated samples. ATAC-seq performed on a series of biobanked specimens identified thousands of chromatin accessible regions with hundreds being highly coordinated with gene expression. Over 4,700 of these chromatin accessible regions were transcribed in newly diagnosed myelomas from the CoMMpass trial. Regulatory element activity alone recapitulated myeloma gene expression subtypes, and in particular myeloma subtypes with IGH translocations were defined by transcription of distal regulatory elements. Moreover, enhancer activity predicted oncogene expression implicating gene regulatory mechanisms in aggressive myeloma. Conclusions: These data demonstrate the feasibility of using biobanked specimens for retrospective studies of the myeloma epigenome and illustrate the unique enhancer landscapes of myeloma subtypes that are coupled to gene expression and disease progression.